ТЕПЛООБМЕН ЧЕЛОВЕКА С ОКРУЖАЮЩЕЙ СРЕДОЙ

<

051414 1418 1 ТЕПЛООБМЕН ЧЕЛОВЕКА С ОКРУЖАЮЩЕЙ СРЕДОЙ Жизнедеятельность человека сопровождается непрерывным выделением теплоты в окружающую среду. Ее количество зависит от степени физического напряжения и составляет от 85 (в состоянии покоя) до 500 Вт (при тяжелой работе). Чтобы физиологические процессы в организме протекали нормально, выделяемая организмом теплота должна полностью отводиться в окружающую среду, Нарушение теплового баланса может привести к перегреву либо к переохлаждению организма и как следствие к потере трудоспособности, быстрому утомлению, потере сознания и тепловой смерти.

Одним из важных интегральных показателей теплового состояния организма является средняя температура тела около 36,5 «С. Она зависит от степени нарушения теплового баланса и уровня энергозатрат при выполнении физической работы. При выполнении работы средней тяжести и тяжелой при высокой температуре воздуха она может повышаться от нескольких десятых градуса до 1…2°С. Наивысшая температура внутренних органов, которую выдерживает человек, составляет 43 °С, минимальная — 25 °С.

Температурный режим кожи играет основную роль в теплоотдаче. Ее температура меняется в довольно значительных пределах и под одеждой составляет 30…34 °С. При неблагоприятных метеорологических условиях на отдельных участках тела температура может понижаться до 20 °С, а иногда и ниже.

Нормальное тепловое самочувствие имеет место, когда тепловыделение QТП человека полностью воспринимается окружающей средой QТО, т. е. когда имеет место тепловой баланс QТП = QТО. В этом случае температура внутренних органов остается постоянной. Если теплопродукция организма не может быть полностью передана окружающей среде (QТП > QТО), происходит рост температуры внутренних органов и такое тепловое самочувствие характеризуется понятием «жарко». В случае, когда окружающая среда воспринимает больше теплоты, чем ее воспроизводит человек (QТП < QТО), то происходит охлаждение организма. Такое тепловое самочувствие характеризуется понятием «холодно».

Теплообмен между человеком и окружающей средой осуществляется конвекцией Qk в результате смывания тела воздухом, излучением на окружающие поверхности и в процессе тепломассообмена Qл при испарении влаги, выводимой на поверхность кожи потовыми железами и при дыхании. Нормальное самочувствие человека реализуется при соблюдении равенства:

QТП = Qk + Qл + QТМ

Количество теплоты, отдаваемое организмом человека различными путями, зависит от того или иного параметра микроклимата. Так, величина и направление конвективного теплообмена человека с окружающей средой определяется в основном температурой окружающей среды, атмосферным давлением, подвижностью и влагосодержанием воздуха.

Излучение теплоты происходит в направлении окружающих человека поверхностей, имеющих более низкую температуру, чем температура поверхности одежды и открытых частей тела человека. При высоких температурах окружающих поверхностей (свыше 30 °С) теплоотдача излучением полностью прекращается, а при более высоких температурах теплоотдача излучением идет в обратном направлении — от горячих поверхностей к человеку.

Отдача теплоты при испарении влаги, выводимой на поверхность кожи потовыми железами, зависит от температуры воздуха, интенсивности работы, выполняемой человеком, от скорости движения окружающего воздуха и его относительной влажности.

Температура, скорость, относительная влажность и атмосферное давление окружающего воздуха получили название параметры микроклимата. Температура окружающих предметов и интенсивность физической нагрузки организма характеризуют конкретную производственную обстановку.

Основными параметрами, обеспечивающими процесс теплообмена человека с окружающей средой, как было показано выше, являются показатели микроклимата. В естественных условиях на поверхности Земли (уровень моря) они изменяются в существенных пределах. Так, температура окружающей среды изменяется от —88 до + 60 °С; подвижность воздуха — от 0 до 60 м/с; относительная влажность — от 10 до 100 % и атмосферное давление — от 680 до 810 мм рт. ст.

Вместе с изменением параметров микроклимата меняется и тепловое самочувствие человека. Условия, нарушающие тепловой баланс, вызывают в организме реакции, способствующие его восстановлению. Процессы регулирования тепловыделений для поддержания постоянной температуры тела человека называются терморегуляцией. Она позволяет сохранять температуру тела постоянной. Терморегуляция осуществляется в основном тремя способами: биохимическим путем; путем изменения интенсивности кровообращения и интенсивности потовыделения.

Терморегуляция биохимическим путем, называемая химической терморегуляцией, заключается в изменении теплопродукции в организме за счет регулирования скорости окислительных реакций. Изменение интенсивности кровообращения и потовыделения изменяет отдачу теплоты в окружающую среду и поэтому называется физической терморегуляцией.

Терморегуляция организма осуществляется одновременно всеми способами. Так, при понижении температуры воздуха увеличению теплоотдачи за счет увеличения разности температур препятствуют такие процессы, как уменьшение влажности кожи, и следовательно, уменьшение теплоотдачи путем испарения, снижение температуры кожных покровов за счет уменьшения интенсивности транспортирования крови от внутренних органов, и вместе с этим уменьшение разности температур. Экспериментально установлено, что оптимальный обмен веществ в организме и соответственно максимальная производительность деятельности имеют место, если составляющие процесса теплоотдачи находятся в следующих пределах: Qk≈30 %; Qл≈ 50 %; QТМ≈ 20 %. Такой баланс характеризует отсутствие напряженности системы терморегуляции.

Параметры микроклимата оказывают непосредственное влияние на тепловое самочувствие человека и его работоспособность. Установлено, что при температуре воздуха более 25 °С работоспособность человека начинает падать. Предельная температура вдыхаемого воздуха, при которой человек в состоянии дышать в течение нескольких минут без специальных средств защиты, около 116°С.

Переносимость человеком температуры, как и его теплоощущение, в значительной мере зависит от влажности и скорости окружающего воздуха. Чем больше относительная влажность, тем меньше испаряется пота в единицу времени и тем быстрее наступает перегрев тела. Особенно неблагоприятное воздействие на тепловое самочувствие человека оказывает высокая влажность при <ос > 30 °С, так как при этом почти вся выделяемая теплота отдается в окружающую среду при испарении пота. При повышении влажности пот не испаряется, а стекает каплями с поверхности кожного покрова. Возникает так называемое проливное течение пота, изнуряющее организм и не обеспечивающее необходимую теплоотдачу. Вместе с потом организм теряет значительное количество минеральных солей, микроэлементов и водорастворимых витаминов. При неблагоприятных условиях потеря жидкости может достигать 8…10 л за смену и с ней до 40 г поваренной соли (всего в организме около 140 г NаС1). Потери более 30 г NаС1 крайне опасны для организма человека, так как приводят к нарушению желудочной секреции, мышечным спазмам, судорогам. Компенсация потерь воды в организме человека при высоких температурах происходит за счет распада углеводов, жиров и белков.

Для восстановления водносолевого баланса работающих в горячих цехах устанавливают пункты подпитки подсоленной (около 0,5 % NаС1) газированной питьевой водой из расчета 4…5 л на человека в смену. На ряде заводов для этих целей применяют белково-витаминный наииток. В жарких климатических условиях рекомендуется пить охлажденную питьевую воду или чай.

Длительное воздействие высокой температуры особенно в сочетании с повышенной влажностью может привести к значительному накоплению теплоты в организме и развитию перегревания организма выше допустимого уровня — гипертермии — состоянию, при котором температура тела поднимается до 38…39 °С. При гипертермии и как следствие тепловом ударе наблюдаются головная боль, головокружение, общая слабость, искажение цветового восприятия, сухость во рту, тошнота, рвота, обильное потовыделение, пульс и дыхание учащены. При этом наблюдается бледность, синюшность, зрачки расширены, временами возникают судороги, потеря сознания.

В горячих цехах промышленных предприятий большинство технологических процессов протекает при температурах, значительно превышающих температуру воздуха окружающей среды. Нагретые поверхности излучают в пространство потоки лучистой энергии, которые могут привести к отрицательным последствиям. Инфракрасные лучи оказывают на организм человека в основном тепловое действие, при этом наступает нарушение деятельности сердечно-сосудистой и нервной систем. Лучи могут вызвать ожог кожи и глаз. Наиболее частым и тяжелым поражением глаз вследствие воздействия инфракрасных лучей является катаракта глаза.

Производственные процессы, выполняемые при пониженной температуре, большой подвижности и влажности воздуха, могут быть причиной охлаждения и даже переохлаждения организма — гипотер-мии. В начальный период воздействия умеренного холода наблюдается уменьшение частоты дыхания, увеличение объема вдоха. При продолжительном действии холода дыхание становится неритмичным, частота и объем вдоха увеличиваются. Появление мышечной дрожи, при которой внешняя работа не совершается, а вся энергия превращается в теплоту, может в течение некоторого времени задерживать снижение температуры внутренних органов. Результатом действия низких температур являются холодовые травмы.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. КОНТРОЛЬ ПОКАЗАТЕЛЕЙ МИКРОКЛИМАТА

 

Нормативные параметры производственного микроклимата установлены ГОСТ 12.1.005—88, а также СанПиН 2.2.4.584—96.

<

Этими нормами регламентировали параметры микроклимата в рабочей зоне производственного помещения: температуру, относительную влажность, скорость движения воздуха в зависимости от способности организма человека к акклиматизации в разное время года, характера одежды, интенсивности производимой работы и характера тепловыделений в рабочем помещении.

 

 

Таблица– Оптимальные показатели микроклимата на рабочих местах производственных помещений

Период года

Категория работ по уровню энергозатрат, Вт

Температура воздуха, 0С

Температура поверхностей, 0С

Относительная влажность воздуха, %

Скорость движения воздуха, м/с

Холодный

Iа(до139)

22…24

21…25

60…40

0,1


 

IIб (140…174)

21…23

20…24

60…40

0,1


 

IIб(175…232)

19…21

18…22

60…40

0,2


 

IIб (233…290)

17…19

16…20

60…40

0,2


 

III (более 290)

16…18

15…19

60…40

0,3

Теплый

Iа (до 139)

23…25

22…26

60…40

0,1


 

Iб (140…174)

22…24

21…25

60…40

0,1


 

IIа (175…232)

20…22

19…23

60…40

0,2


 

IIб (233…290)

19…21

18…22

.60…40

0,2


 

III (более 290)

18…20)

17…21

60…40

0,3

 

Для оценки характера одежды и акклиматизации организма в разное время года введено понятие периода года. Различают теплый и холодный период года. Теплый период года характеризуется среднесуточной температурой наружного воздуха + 10 °С и выше, холодный — ниже + 10°С.

При учете интенсивности труда все виды работ, исходя из общих энегогозатрат организма, делятся на три категории: легкие, средней тяжести и тяжелые. Характеристику производственных помещений по категории выполняемых в них работ устанавливают по категории работ, выполняемых половиной и более работающих в соответствующем помещении.

К легким работам (категория I) относятся работы, выполняемые сидя или стоя, не требующие систематического физического напряжения (работа контролеров, в процессах точного приборостроения, конторские работы и др.). Легкие работы подразделяют на категорию 1а (затраты энергии до 139 Вт) и категорию 16 (затраты энергии 140…174 Вт). К работам средней тяжести (категория II) относят работы с затратой энергии 175…232 (категория На) и 233…290 Вт (категория 116). В категорию На входят работы, связанные с постоянной ходьбой, выполняемые стоя или сидя, но не требующие перемещения тяжестей, в категорию Пб — работы, связанные с ходьбой и переноской небольших (до 10 кг) тяжестей (в механосборочных цехах, текстильном производстве, При обработке древесины и др.). К тяжелым работам (категория III) с затратой энергии более 290 Вт относят работы, связанные с систематическим физическим напряжением, в частности с постоянным передвижением, с переноской значительных (более 10 кг) тяжестей (в кузнечных, литейных цехах с ручными процессами и др.).

 

В рабочей зоне производственного помещения согласно ГОСТ 12.1.005—88 могут быть установлены оптимальные и допустимые микроклиматические условия. Оптимальные микроклиматические условия — это такое сочетание параметров микроклимата, которое при длительном и систематическом воздействии на человека обеспечивает ощущение теплового комфорта и создает предпосылки для высокой работоспособности.

Допустимые микроклиматические условия — это такие сочетания параметров микроклимата, которые при длительном и систематическом воздействии на человека могут вызвать напряжение реакций терморегуляции и которые не выходят за пределы физиологических приспособительных возможностей. При этом не возникает нарушений в состоянии здоровья, не наблюдаются дискомфортные теплоощущения, ухудшающие самочувствие, и понижение работоспособности.

Измерения показателей микроклимата проводят в рабочей зоне на высоте 1,5 м от пола, повторяя их в различное время дня и года, в разные периоды технологического процесса. Измеряют температуру, относительную влажность и скорость движения воздуха.

051414 1418 2 ТЕПЛООБМЕН ЧЕЛОВЕКА С ОКРУЖАЮЩЕЙ СРЕДОЙДля измерения температуры и относительной влажности воздуха используют аспирационный психрометр Асмана (рис. 2). Он состоит из двух термометров. У одного из них ртутный резервуар покрыт тканью, которую увлажняют с помощью пипетки. Сухой термометр показывает температуру воздуха. Показания влажного термометра зависят от относительной влажности воздуха: температура его тем меньше, чем ниже относительная влажность, поскольку с уменьшением влажности возрастает скорость испарения воды с увлажненной ткани и поверхность резервуара охлаждается более интенсивно.

 

051414 1418 3 ТЕПЛООБМЕН ЧЕЛОВЕКА С ОКРУЖАЮЩЕЙ СРЕДОЙ051414 1418 4 ТЕПЛООБМЕН ЧЕЛОВЕКА С ОКРУЖАЮЩЕЙ СРЕДОЙ

Чтобы исключить влияние подвижности воздуха в помещении на показания влажного термометра (движение воздуха повышает скорость испарения воды с поверхности увлажненной ткани, что ведет к дополнительному охлаждению ртутного баллона с соответствующим занижением измеряемой величины влажности по сравнению с ее истинным значением) оба термометра помещены в металлические защитные трубки. С целью повышения точности и стабильности показаний прибора в процессе измерения температуры сухим и влажным термометрами через обе трубки пропускаются постоянные потоки воздуха, создаваемые вентилятором, размещенным в верхней части прибора.

Перед измерением в специальную пипетку набирают воду и увлажняют ее тканевую оболочку влажного термометра. При этом прибор держат вертикально, затем взводят часовой механизм и устанавливают (подвешивают или удерживают в руке) в точке измерения.

Через 3…5 мин показания сухого и , влажного термометров устанавливаются на определенных уровнях, по которым с помощью специальных таблиц рассчитывается относительная влажность воздуха.

Скорость движения воздуха измеряется с помощью анемометров (рис. 2.7). При скорости движения воздуха свыше 1 м/с используют крыльчатые или чашечные анемометры, при меньших скоростях — термоанемометры.

Принцип действия крыльчатого и чашечного анемометров — механический. Под воздействием аэродинамической силы движущегося потока воздуха ротор прибора с закрепленными на нем крыльями (пластинками) начинает вращаться со скоростью, величина которой соответствует скорости набегающего потока. Через систему зубчатых колес ось соединена с подвижными стрелками. Центральная стрелка показывает единицы и десятки, стрелки мелких циферблатов — сотни и тысячи делений. С помощью расположенного сбоку рычага можно отключить ось от механизма зубчатых колес или подключить ее.

 

Перед измерением записывают показания циферблатов при отключенной оси. Прибор устанавливают в точке измерения, и ось с закрепленными на ней крыльями начинает вращаться. По секундомеру засекают время и включают прибор. Через 1 мин движением рычага ось отключают и снова записывают показания. Разность показаний прибора делят на 60 (число секунд в минуте) для определения скорости вращения стрелки — количества проходимых ею делений за 1 с. По найденной величине с помощью прилагаемого к прибору графика определяют скорость движения воздуха в секунду.

051414 1418 5 ТЕПЛООБМЕН ЧЕЛОВЕКА С ОКРУЖАЮЩЕЙ СРЕДОЙ051414 1418 6 ТЕПЛООБМЕН ЧЕЛОВЕКА С ОКРУЖАЮЩЕЙ СРЕДОЙ

Для измерения малых скоростей движения воздуха используют термоанемометр, который позволяет также определять температуру воздуха. Принцип измерения основан на изменении электрического сопротивления чувствительного элемента прибора при изменении температуры и скорости воздуха. По величине электрического тока, измеряемого гальванометром, определяют с помощью таблиц скорость движения потока воздуха

 

 

 

 

 

 

 

 

 

ЛИТЕРАТУРА

 

  1. Денисенко Г.Ф. Охрана труда: Учебное пособие. – М.: Высшая школа, 1995. .
  2. Дружинин В.Ф., Мотивация деятельности в чрезвычайных ситуациях, М., 1996.
  3. Жидецкий В.Ц., Джигирей В.С., Мельников А.В. Основы охраны труда. Учебник – Изд. 2-е, дополненное. –СПб: Афиша, 2000.
  4. Леонтьева И.Н., Гетия С.И. Безопасность жизнедеятельности. М., 1998.


     

<

Комментирование закрыто.

MAXCACHE: 0.94MB/0.00112 sec

WordPress: 22.51MB | MySQL:122 | 1,580sec