Этапы развития электронно-вычислительной техники

<

110513 0114 1 Этапы развития электронно вычислительной техники Стремительное развитие цифровой вычислительной техники (ВТ) и становление науки о принципах ее построения и проектирования началось в 40-х годах нашего века, когда технической базой ВТ стала электроника, затем микроэлектроника, а основой для развития архитектуры компьютеров (электронных вычислительных машин ЭВМ) — достижения в области искусственного интеллекта.

До этого времени в течение почти 500 лет цифровая вычислительная техника сводилась к простейшим устройствам для выполнения арифметических операций над числами. Основой практически всех изобретенных за 5 столетий устройств было зубчатое колесо, рассчитанное на фиксацию 10 цифр десятичной системы счисления.

Как показывает история, компьютерная техника и информационные технологии находятся в постоянном развитии, причем темпы роста с каждым годом увеличиваются. Разработка новых и преобразование имеющихся компьютерных средств, смена одних поколений ЭВМ другими, совершенствование новых информационных технологий (НИТ) предоставляет новые возможности, которые могут и должны использоваться в сфере образования. Однако не всегда внедрение НИТ достигает желаемого результата обучения. Для выявления наиболее значимых этапов и степени их влияния на образование проведен анализ истории развития вычислительной техники, начиная с истоков зарождения инструментального счета до наших дней. В результате выделены следующие ступени, которые оказали необратимое влияние на методику и качество образования: создание персонального компьютера; развитие мультимедиа-технологий; использование локальной сети; подключение к глобальным сетям.

Немногим более 50 лет прошло с тех пор, как появилась первая электронная вычислительная машина. За этот короткий для развития общества период сменилось несколько поколений вычислительных машин, а первые ЭВМ сегодня являются музейной редкостью. Сама история развития вычислительной техники представляет немалый интерес, показывая тесную взаимосвязь математики с физикой (прежде всего с физикой твердого тела, полупроводников, электроникой) и современной технологией, уровнем развития которой во многом определяется прогресс в производстве средств вычислительной техники.

Электронно-вычислительные машины у нас в стране принято делить на поколения. Для компьютерной техники характерна прежде всего быстрота смены поколений — за ее короткую историю развития уже успели смениться четыре поколения и сейчас мы работаем на компьютерах пятого поколения. Что же является определяющим признаком при отнесении ЭВМ к тому или иному поколению? Это прежде всего их элементная база (из каких в основном элементов они построены), и такие важные характеристики, как быстродействие, емкость памяти, способы управления и переработки информации. Конечно же, деление ЭВМ на поколения в определенной мере условно. Существует немало моделей, которые по одним признакам относятся к одному, а по другим — к другому поколению. И все же, несмотря на эту условность поколения ЭВМ можно считать качественными скачками в развитии электронно-вычислительной техники.

В настоящее время компьютеры представлены практически во всех областях жизни человека. Для того чтобы полно оценить влияние компьютеров на жизнь человека и его будущее, необходимо понять, как проходила их эволюция.

1. 1. Программно-управляемые автоматические цифровые вычислительные машины

 

Предшественницей универсальных вычислительных машин с программным управлением считают машину, спроектированную в 1833 г. английским инженером и математиком Ч.Беббиджем.

В 30-е годы XX в. начинают разрабатываться программно-управляемые автоматические цифровые вычислительные машины на релейных схемах. Это были электромеханические машины.

Работы по созданию первых релейных вычислительных машин проводились одновременно и независимо в Германии и США под руководством ученых К. Цузе, Г. Айкена и Дж. Штибитца.

Еще десятью годами ранее, в 1934 г. немецкий студент Конрад Цузе, работавший над дипломным проектом, решил сделать (у себя дома), цифровую вычислительную машину с программным управлением и с использованием — впервые в мире — двоичной системы счисления. В 1937 г. машина Z1 (Цузе 1) заработала. Она была двоичной, 22-х разрядной, с плавающей запятой, с памятью на 64 числа и все это на чисто механической (рычажной) основе.

В том же 1937 г., когда заработала первая в мире двоичная машина Z1, Джон Атанасов (болгарин по происхождению, живший в США) начал разработку специализированный компьютер, впервые в мире применив электронные лампы (300 ламп).

Пионерами электроники оказались и англичане – в 1942»- 43 годах в Англии была создана (с участием Алана Тьюринга) ВМ «Колоссус» В ней было 2000 электронных ламп. Машина предназначалась для расшифровки радиограмм германского вермахта. Работы Цузе и Тьюринга были секретными. О них в то время знали немногие. Они не вызвали какого-либо резонанса в мире. И только в 1946 г. когда появилась информация об ЭВМ «ЭНИАК» (электронный цифровой интегратор и компьютер), созданной в США Д.Мочли и П.Эккертом, перспективность электронной техники стала очевидной (В машине использовалось 18 тыс.электронных ламп и она выполняла около 3-х тыс. операций в сек). Однако машина оставалась десятичной, а ее память составляла лишь 20 слов. Программы хранились вне оперативной памяти.

Начиная с 1943 года группа специалистов под руководством Говарда Эйкена, Дж. Моучли и П. Эккерта в США начала конструировать вычислительную машину на основе электронных ламп, а не на электромагнитных реле. Эта машина была названа ENIAC (Electronic Numeral Integrator And Computer) и работала она в тысячу раз быстрее, чем «Марк-1». ENIAC содержал 18 тысяч вакуумных ламп, занимал площадь 9´15 метров, весил 30 тонн и потреблял мощность 150 киловатт.

В 1945 году к работе над созданием ЭВМ был привлечен знаменитый математик Джон фон Нейман, который подготовил доклад об этой машине. В этом докладе фон Нейман ясно и просто сформулировал общие принципы функционирования универсальных вычислительных устройств, т.е. компьютеров. Это первая действующая машина, построенная на вакуумных лампах, официально была введена в эксплуатацию 15 февраля 1946 года. Эту машину пытались использовать для решения некоторых задач, подготовленных фон Нейманом и связанных с проектом атомной бомбы. Затем она была перевезена на Абердинский полигон, где работала до 1955 года.

ENIAC стал первым представителем 1-го поколения компьютеров. Любая классификация условна, но большинство специалистов согласилось с тем, что различать поколения следует исходя из той элементной базы, на основе которой строятся машины. Таким образом, первое поколение представляется ламповыми машинами.

Устройство и работа компьютера по «принципу фон Неймана». Отметим важнейшие из них:

  • машины на электронных элементах должны работать не в десятичной, а в двоичной системе счисления;
  • программа, как и исходные данные, должна размещаться в памяти машины;
  • программа, как и числа, должна записываться в двоичном коде;
  • трудности физической реализации запоминающего устройства, быстродействие которого соответствует скорости работы логических схем, требуют иерархической организации памяти (то есть выделения оперативной, промежуточной и долговременной памяти);
  • арифметическое устройство (процессор) конструируется на основе схем, выполняющих операцию сложения; создание специальных устройств для выполнения других арифметических и иных операций нецелесообразно;
  • в машине используется параллельный принцип организации вычислительного процесса (операции над числами производятся одновременно по всем разрядам).

    Практически все рекомендации фон Неймана впоследствии использовались в машинах первых трех поколений, их совокупность получила название «архитектура фон Неймана».

     

    1.2. Первый этап (1948 – 1958 г.г.)

     

    В течение механического, релейного и в начале электронного периода развития цифровая вычислительная техника оставалась областью техники, научные основы которой только созревали.

    Первыми составляющими будущей науки, использованными, в дальнейшем, для создания основ теории ВМ, явились исследования двоичной системы счисления, проведенные Лейбницом (XYII век), алгебра логики, разработанная Джорджем Булем (XIХ век), абстрактная «машина Тьюринга», предложенная гениальным англичанином в 1936 г. для доказательства возможности механической реализации любого имеющего решение алгоритма, теоретические результаты Клода Шеннона, Шестакова, Гаврилова (30-е годы ХХ в.) соединившие электронику с логикой.

    Принципы построения компьютеров, высказанные П.Эккертом и Нейманом (США, 1946 г.) и, независимо, С.Лебедевым (СССР, 1948 г.) стали завершением первого этапа развития науки о компьютерах.

    Цифровая вычислительная техника в это время была еще несовершенна и во многом уступала аналоговой, имевшей в своем арсенале механические интеграторы, машины для решения дифференциальных уравнений и др.

    В СССР, в том числе в Украине, понятие «вычислительная техника» долгое время использовалось как для обозначения технических средств, так и науки о принципах их построения и проектирования.

    Однако, на следующем этапе цифровая техника сделала беспрецендентный рывок за счет интеллектуализации ЭВМ, в то время как аналоговая техника не вышла за рамки средств для автоматизации вычислений.

    Развитию цифровой техники способствовало развитие во второй половине ХХ в. науки о компьютерах. Научные основы цифровых ЭВМ в это время пополнились теорией цифровых автоматов, основами программирования, теорией искусственного интеллекта, теорией проектирования ЭВМ, компьютерными технологиями, обеспечившими становление новой науки, получившей название «Computer Science» (компьютерная наука) в США и «информатика» в Европе.

    Первый компьютер, в котором были воплощены принципы фон Неймана, был построен в 1949 году английским исследователем Морисом Уилксом. С той поры компьютеры стали гораздо более мощными, но подавляющее большинство из них сделано в соответствии с теми принципами, которые изложил в своем докладе в 1945 года Джон фон Нейман.

    Новые машины первого поколения сменяли друг друга довольно быстро. В 1951 году заработала первая советская электронная вычислительная машина МЭСМ, площадью около 50 квадратных метров.

    Завершающую точку в создании первых ЭВМ поставили, почти одновременно, в 1949 – 52 гг. ученые Англии, Советского Союза и США (Морис Уилкс, ЭДСАК, 1949 г.; Сергей Лебедев, МЭСМ, 1951 г.; Исаак Брук, М1, 1952 г.; Джон Мочли и Преспер Эккерт, Джон фон Нейман ЭДВАК, 1952 г.), создавшие ЭВМ с хранимой в памяти программой.

    Одной из наиболее совершенных – была мащина РВМ-1, сконструированная и построенная в СССР в течение 1954 – 1957 гг. под руководством Н. И. Бессонова (1906-1963). Она содержала 5500 реле и выполняла свыше 20 операций в секунду.

    В 40-е годы нашего столетия появились первые электронно-вычислительные машины (ЭВМ). Этому во многом способствовало изобретение лампового триггера, которое сделал еще в 1918 г. русский ученый М. Бонч-Бруевич. Независимо от него в 1919 г. такое же изобретение сделали американцы У. Иклз и Д. Джордан. Ламповый триггер – это электронное устройство с двумя устойчивыми состояниями.

    В 1952 году на свет появилась американская машина EDWAC.

    Элементной базой машин этого поколения были электронные лампы – диоды и триоды.

    В 1952 году советские конструкторы ввели в эксплуатацию БЭСМ – самую быстродействующую машину в Европе, а в следующем году в СССР начала работать «Стрела» – первая в Европе серийная машина высокого класса. Среди создателей отечественных машин в первую очередь следует назвать имена С.А. Лебедева, Б.Я. Базилевского, И.С. Брука, Б.И. Рамеева, В.А. Мельникова, М.А. Карцева, А.Н. Мямлина. В 50-х годах появились и другие ЭВМ: «Урал», М-2, М-3, БЭСМ2, «Минск1», – которые воплощали в себе все более прогрессивные инженерные решения.

    Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ, БЭСМ-1, М-1, М-2, М-З, «Стрела», «Минск-1», «Урал-1», «Урал-2», «Урал-3», M-20, «Сетунь», БЭСМ-2, «Раздан». Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2—3 тысяч операций в секунду, емкость оперативной памяти—2К или 2048 машинных слов (1K=1024) длиной 48 двоичных знаков. В 1958 г. появилась машина M-20 с памятью 4К и быстродействием около 20 тысяч операций в секунду. В машинах первого поколения были реализованы основные логические принципы построения электронно-вычислительных машин и концепции Джона фон Неймана, касающиеся работы ЭВМ по вводимой в память программе и исходным данным (числам).

    Этот период явился началом коммерческого применения электронных вычислительных машин для обработки данных. В вычислительных машинах этого времени использовались электровакуумные лампы и внешняя память на магнитном барабане. Они были опутаны проводами и имели время доступа 1х10-3 с. Производственные системы и компиляторы пока не появились. В конце этого периода стали выпускаться устройства памяти на магнитных сердечниках. Надежность ЭВМ этого поколения была крайне низкой.

    Проекты и реализация машин «Марк–1», EDSAC и EDVAC в Англии и США , МЭСМ в СССР заложили основу для развёртывания работ по созданию ЭВМ вакуумноламповой технологии – серийных ЭВМ первого поколения. Разработка первой электронной серийной машины UNIVAC (Universal Automatic Computer) была начата примерно в 1947 г. Эккертом и Маучли. Первый образец машины (UNIVAC-1) был построен для бюро переписи США и пущен в эксплуатацию весной 1951 г. Синхронная, последовательного действия вычислительная машина UNIVAC-1 создана на базе ЭВМ ENIAC и EDVAC. Работала она с тактовой частотой 2,25 МГц и содержала около 5000 электронных ламп.

    По сравнению с США, СССР и Англией развитие электронной вычислительной техники в Японии, ФРГ и Италии задержалось. Первая японская машина «Фуджик» была введена в эксплуатацию в 1956 году, серийное производство ЭВМ в ФРГ началось лишь в 1958 году.

     

     

     

    1.3. Полупроводниковые ЭВМ (второй этап – 1959 – 1967 г.г.)

     

    Элементной базой второго поколения стали полупроводники. Без сомнения, транзисторы можно считать одним из наиболее впечатляющих чудес XX века.

    Патент на открытие транзистора был выдан в 1948 году американцам Д. Бардину и У.Браттейну, а через восемь лет они вместе с теоретиком В. Шокли стали лауреатами Нобелевской премии.

    Первая бортовая ЭВМ для установки на межконтинентальной ракете – «Атлас» – была введена в эксплуатацию в США в 1955 году. В машине использовалось 20 тысяч транзисторов и диодов, она потребляла 4 киловатта.

    В 1956 г. фирмой IBM были разработаны плавающие магнитные головки на воздушной подушке. Изобретение их позволило создать новый тип памяти – дисковые запоминающие устройства, значимость которых была в полной мере оценена в последующие десятилетия развития вычислительной техники. Первые запоминающие устройства на дисках появились в машинах IBM-305 и RAMAC.

    Первые серийные универсальные ЭВМ на транзисторах были выпущены в 1958 году одновременно в США, ФРГ и Японии.

    В Советском Союзе первые безламповые машины «Сетунь», «Раздан» и «Раздан2» были созданы в 19591961 годах. В 60-х годах советские конструкторы разработали около 30 моделей транзисторных компьютеров, большинство которых стали выпускаться серийно. Наиболее мощный из них – «Минск32» выполнял 65 тысяч операций в секунду. Появились целые семейства машин: «Урал», «Минск», БЭСМ.

    Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличило емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития программного обеспечения. Появились также специализированные машины, например ЭВМ для решения экономических задач, для управления производственными процессами, системами передачи информации и т.д. К ЭВМ второго поколения относятся:

  • ЭВМ М-40, -50 для систем противоракетной обороны;
  • Урал -11, -14, -16 — ЭВМ общего назначения, ориентированные на решение инженерно-технических и планово-экономических задач;
  • Минск  -2, -12, -14 для решения инженерных, научных и конструкторских задач математического и логического характера;
  • Минск-22 предназначена для решения научно-технических и планово-экономических задач;
  • БЭСМ-3 -4, -6 машин общего назначения, ориентированных на решение сложных задач науки и техники;
  • М-20, -220, -222 машина общего назначения, ориентированная на решение сложных математических задач;
  • МИР-1 малая электронная цифровая вычислительная машина, предназначенная для решения широкого круга инженерно-конструкторских математических задач,
  • «Наири» машина общего назначения, предназначеная для решения широкого круга инженерных, научно-технических, а также некоторых типов планово-экономических и учетно-статистических задач;
  • Рута-110  мини ЭВМ общего назначения;

    и ряд других ЭВМ.

    ЭВМ БЭСМ-4, М-220, М-222 имели быстродействие порядка 20—30 тысяч операций в секунду и оперативную память — соответственно 8К, 16К и 32К. Среди машин второго поколения особо выделяется БЭСМ-6, обладающая быстродействием около миллиона операций в секунду и оперативной памятью от 32К до 128К (в большинстве машин используется два сегмента памяти по 32К каждый).

    Рекордсменом среди ЭВМ второго поколения стала БЭСМ6, имевшая быстродействие около миллиона операций в секунду – одна из самых производительных в мире. Архитектура и многие технические решения в этом компьютере были настолько прогрессивными и опережающими свое время, что он успешно использовался почти до нашего времени.

    Специально для автоматизации инженерных расчетов в Институте кибернетики Академии наук УССР под руководством академика В.М. Глушкова были разработаны компьютеры МИР (1966) и МИР-2 (1969). Важной особенностью машины МИР-2 явилось использование телевизионного экрана для визуального контроля информации и светового пера, с помощью которого можно было корректировать данные прямо на экране.

    Данный период характеризуется широким применением транзисторов и усовершенствованных схем памяти на сердечниках. Большое внимание начали уделять созданию системного программного обеспечения, компиляторов и средств ввода-вывода. В конце указанного периода появились универсальные и достаточно эффективные компиляторы для Кобола, Фортрана и других языков.

    Была достигнута уже величина времени доступа 1х10-6 с, хотя большая часть элементов вычислительной машины еще была связана проводами.

    Вычислительные машины этого периода успешно применялись в областях, связанных с обработкой множеств данных и решением задач, обычно требующих выполнения рутинных операций на заводах, в учреждениях и банках. Эти вычислительные машины работали по принципу пакетной обработки данных. По существу, при этом копировались ручные методы обработки данных. Новые возможности, предоставляемые вычислительными машинами, практически не использовались.

    Именно в этот период возникла профессия специалиста по информатике, и многие университеты стали предоставлять возможность получения образования в этой области.

     

     

     

    1.4. ЭВМ на интегральных схемах (третий период 1968 – 1973 г.г.)

     

    Приоритет в изобретении интегральных схем, ставших элементной базой ЭВМ третьего поколения, принадлежит американским ученым Д. Килби и Р. Нойсу, сделавшим это открытие независимо друг от друга. Массовый выпуск интегральных схем начался в 1962 году, а в 1964 начал быстро осуществляться переход от дискретных элементов к интегральным. Упоминавшийся выше ЭНИАК размерами 9´15 метров в 1971 году мог бы быть собран на пластине в 1,5 квадратных сантиметра. Началось перевоплощение электроники в микроэлектронику.

    Элементная база ЭВМ – малые интегральные схемы (МИС). Машины предназначались для широкого использования в различных областях науки и техники (проведение расчетов, управление производством, подвижными объектами и др.). Благодаря интегральным схемам удалось существенно улучшить технико-эксплуатационные характеристики ЭВМ. Например, машины третьего поколения по сравнению с машинами второго поколения имеют больший объем оперативной памяти, увеличилось быстродействие, повысилась надежность, а потребляемая мощность, занимаемая площадь и масса уменьшились.

    Несмотря на успехи интегральной техники и появление мини-ЭВМ, в 60-х годах продолжали доминировать большие машины. Таким образом, третье поколение компьютеров, зарождаясь внутри второго, постепенно вырастало из него.

    Первая массовая серия машин на интегральных элементах стала выпускаться в 1964 году фирмой IBM. Эта серия, известная под названием IBM-360, оказала значительное влияние на развитие вычислительной техники второй половины 60-х годов. Она объединила целое семейство ЭВМ с широким диапазоном производительности, причем совместимых друг с другом. Последнее означало, что машины стало возможно связывать в комплексы, а также без всяких переделок переносить программы, написанные для одной ЭВМ, на любую другую из этой серии. Таким образом, впервые было выявлено коммерчески выгодное требование стандартизации аппаратного и программного обеспечения ЭВМ.

     

    В СССР первой серийной ЭВМ на интегральных схемах была машина «Наири-3», появившаяся в 1970 году.

    Со второй половины 60-х годов Советский Союз совместно со странами СЭВ приступил к разработке семейства универсальных машин, аналогичного системе ibm-360. В 1972 году началось серийное производство стартовой, наименее мощной модели Единой Системы – ЭВМ ЕС-1010, а еще через год – пяти других моделей. Их быстродействие находилась в пределах от десяти тысяч (ЕС-1010) до двух миллионов (ЕС-1060) операций в секунду.

    В СССР в 70-е годы получают дальнейшее развитие АСУ. Закладываются основы государственной и межгосударственной, охватывающей страны — члены СЭВ (Совет Экономической Взаимопомощи) системы обработки данных. Разрабатываются универсальные ЭВМ третьего поколения ЕС, совместимые как между собой (машины средней и высокой производительности ЕС ЭВМ), так и с зарубежными ЭВМ третьего поколения (IBM-360 и др. — США). В разработке машин ЕС ЭВМ принимают участие специалисты СССР, Народной Республики Болгария (НРБ), Венгерской Народной Республики (ВНР), Польской Народной Республики (ПНР), Чехословацкой Советской Социалистической Республики (ЧССР) и Германской Демократической Республики (ГДР). В то же время в СССР создаются многопроцессорные и квазианалоговые ЭВМ, выпускаются мини-ЭВМ «Мир-31», «Мир-32», «Наири-34». Для управления технологическими процессами создаются ЭВМ серии АСВТ М-6000 и М-7000 (разработчики В.П.Рязанов и др.). Разрабатываются и выпускаются настольные мини-ЭВМ на интегральных микросхемах М-180, «Электроника -79, -100, -125, -200″, «Электроника ДЗ-28», «Электроника НЦ-60» и др.

    К машинам третьего поколения относились «Днепр-2», ЭВМ Единой Системы (ЕС-1010, ЕС-1020, ЕС-1030, ЕС-1040, ЕС-1050, ЕС-1060 и несколько их промежуточных модификаций – ЕС-1021 и др.), МИР-2, «Наири-2» и ряд других.

    В рамках третьего поколения в США была построена уникальная машина «ИЛЛИАК-4», в составе которой в первоначальном варианте планировалось использовать 256 устройств обработки данных, выполненных на монолитных интегральных схемах.

    Характерной чертой данного периода явилось резкое снижение цен на аппаратное обеспечение. Этого удалось добиться главным образом за счет использования интегральных схем. Обычные электрические соединения с помощью проводов при этом встраивались в микросхему. Это позволило получить значение времени доступа до 2х10 -9 с. В этот период на рынке появились удобные для пользователя рабочие станции, которые за счет объединения в сеть значительно упростили возможность получения малого времени доступа, обычно присущего большим машинам. Дальнейший прогресс в развитии вычислительной техники был связан с разработкой полупроводниковой памяти, жидкокристаллических экранов и электронной памяти. В конце этого периода произошел коммерческий прорыв в области микроэлектронной технологии.

    Возросшая производительность вычислительных машин и только появившиеся многомашинные системы дали принципиальную возможность реализации таких новых задач, которые были достаточно сложны и часто приводили к неразрешимым проблемам при их программной реализации. Начали говорить о «кризисе программного обеспечения». Тогда появились эффективные методы разработки программного обеспечения. Создание новых программных продуктов теперь все чаще основывалось на методах планирования и специальных методах программирования.

    Этот период связан с бурным развитием вычислительных машин реального времени. Появилась тенденция, в соответствии с которой в задачах управления наряду с большими вычислительными машинами находится место и для использования малых машин. Так, оказалось, что миниЭВМ исключительно хорошо справляется с функциями управления сложными промышленными установками, где большая вычислительная машина часто отказывает. Сложные системы управления разбиваются при этом на подсистемы, в каждой из которых используется своя миниЭВМ. На большую вычислительную машину реального времени возлагаются задачи планирования (наблюдения) в иерархической системе с целью координации управления подсистемами и обработки центральных данных об объекте.

    <

    Программное обеспечение для малых вычислительных машин вначале было совсем элементарным, однако уже к 1968 г. появились первые коммерческие операционные системы реального времени, специально разработанные для них языки программирования высокого уровня и кросс-системы. Все это обеспечило доступность малых машин для широкого круга приложений. Сегодня едва ли можно найти такую отрасль промышленности, в которой бы эти машины в той или иной форме успешно не применялись. Их функции на производстве очень многообразны; так, можно указать простые системы сбора данных, автоматизированные испытательные стенды, системы управления процессами. Следует подчеркнуть, что управляющая вычислительная машина теперь все чаще вторгается в область коммерческой обработки данных, где применяется для решения коммерческих задач.

    МиниЭВМ начали применяться и для решения инженерных задач, связанных с проектированием. Проведены первые эксперименты, показавшие эффективность использования вычислительных машин в качестве средств проектирования.

    Применение распределенных вычислительных систем явилось базой для децентрализации решения задач, связанных с обработкой данных на заводах, в банках и других учреждениях. Вместе с тем для данного периода характерным является хронический дефицит кадров, подготовленных в области электронных вычислительных машин. Это особенно касается задач, связанных с проектированием распределенных вычислительных систем и систем реального времени.

     

    1.5. ЭВМ четвертного поколения (период 1959 – 1982 г.г.)

     

    Начало 70-х годов знаменует переход к компьютерам четвертого поколения – на сверхбольших интегральных схемах (СБИС). Другим признаком ЭВМ нового поколения являются резкие изменения в архитектуре.

    Элементная база ЭВМ — большие интегральные схемы (БИС). Машины предназначались для резкого повышения производительности труда в науке, производстве, управлении, здравоохранении, обслуживании и быту. Высокая степень интеграции способствует увеличению плотности компоновки электронной аппаратуры, повышению ее надежности, что ведет к увеличению быстродействия ЭВМ и снижению ее стоимости. Все это оказывает существенное воздействие на логическую структуру (архитектуру) ЭВМ и на ее программное обеспечение. Более тесной становится связь структуры машины и ее программного обеспечения, особенно операционной системы (или монитора)—набора программ, которые организуют непрерывную работу машины без вмешательства человека.

    Техника четвертого поколения породила качественно новый элемент ЭВМ – микропроцессор. В 1971 году пришли к идее ограничить возможности процессора, заложив в него небольшой набор операций, микропрограммы которых должны быть заранее введены в постоянную память.

    Из больших компьютеров четвертого поколения на сверхбольших интегральных схемах особенно выделялись американские машины «Крей-1» и «Крей-2», а также советские модели «Эльбрус-1» и «Эльбрус-2». Первые их образцы появились примерно в одно и то же время – в 1976 году. Все они относятся к категории суперкомпьютеров, так как имеют предельно достижимые для своего времени характеристики и очень высокую стоимость.

    В машинах четвертого поколения сделан отход от архитектуры фон Неймана, которая была ведущим признаком подавляющего большинства всех предыдущих компьютеров.

    Хотя и персональные компьютеры относятся к ЭВМ 4-го поколения, все же возможность их широкого распространения, несмотря на достижения технологии СБИС, оставалась бы весьма небольшой.

    В 1970 году был сделан важный шаг на пути к персональному компьютеру – Маршиан Эдвард Хофф из фирмы Intеl сконструировал интегральную схему, аналогичную по своим функциям центральному процессору большого компьютера. Так появился первый микропроцессор Intеl 4004, который был выпущен в продажу в 1971 г. Это был настоящий прорыв, ибо микропроцессор Intеl 4004 размером менее 3 см был производительнее гигантских машин 1-го поколения. Правда, возможности Intе1 4004 были куда скромнее, чем у центрального процессора больших компьютеров того времени, – он работал гораздо медленнее и мог обрабатывать одновременно только 4 бита информации (процессоры больших компьютеров обрабатывали 16 или 32 бита одновременно), но и стоил он в десятки тысяч раз дешевле. Но рост производительности микропроцессоров не заставил себя ждать.

    К этому поколению можно отнести ЭВМ ЕС: ЕС-1015, -1025, -1035, -1045, -1055, -1065 («Ряд 2»), -1036, -1046, -1066, СМ-1420, -1600, -1700, все персональные ЭВМ («Электроника МС 0501», «Электроника-85», «Искра-226», ЕС-1840, -1841, -1842 и др.), а также другие типы и модификации. К ЭВМ четвертого поколения относится также многопроцессорный вычислительный комплекс «Эльбрус«. «Эльбрус-1КБ» имел быстродействие до 5,5 млн. операций с плавающей точкой в секунду, а объем оперативной памяти до 64 Мб. У «Эльбрус-2» производительность до 120 млн. операций в секунду, емкость оперативной памяти до 144 Мб или 16 Мслов ( слово 72 разряда), максимальная пропускная способность каналов ввода-вывода — 120 Мб/с.

    Первый массовым персональным компьютером был «Altair-8800», созданный в 1974 году небольшой компанией в Альбукерке (штат Нью-Мексико).

    В 1981 году появилась первая версия операционной системы для компьютера IBM РС – MS DOS 1.0. В дальнейшем по мере совершенствования компьютеров IВМ РС выпускались и новые версии DOS, учитывающие новые возможности компьютеров и предоставляющие дополнительные удобства пользователю.

    В августе 1981 г. новый компьютер под названием «IВМ Personal Computer» был официально представлен публике и вскоре после этого он приобрел большую популярность у пользователей. IBM PC имел 64 Кб оперативной памяти, магнитофон для загрузки/сохранения программ и данных, дисковод и встроенную версию языка BASIС. В течение двух лет было продано более пяти миллионов этих компьютеров. В то же время компания Microsoft начинает выпуск программного обеспечения для IBM PC. Появляются клоны IBM PC, но все они, так или иначе, отражают стандарты, заложенные IBM. Появление клонов IBM PC способствовало росту промышленного производства персональных компьютеров.

    В 1984 году компания Apple представила компьютер «Макинтош». Операционная система «Макинтоша» включала в себя графический интерфейс пользователя, позволявший вводить команды, выбирая их с помощью указателя «мышь». Сами команды были представлены в виде небольших графических изображений — значков. Простота использования в сочетании с большим набором текстовых и графических программ сделала этот компьютер идеальным для небольших офисов, издательств, школ и даже детских садов. С появлением «Макинтоша» персональный компьютер стал еще более доступным. Для работы с ним больше не требовалось никаких специальных навыков, а тем более знания программирования. В 1984 году компания Apple показала на телевидении первый ролик, посвященный рекламе персонального компьютера. Компьютер действительно перестал быть чем-то особенным и превратился в обычный бытовой прибор.

    На протяжении всего 50 лет компьютеры превратились из неуклюжих диковинных электронных монстров в мощный, гибкий, удобный и доступный инструмент. Компьютеры стали символом прогресса в XX веке. По мере того как человеку понадобится обрабатывать все большее количество информации, будут совершенствоваться и средства ее обработки – компьютеры.

    Через один – два года компьютер IВМ РС занял ведущее место на рынке, вытеснив модели 8-битовых компьютеров.

    Новое поколение микропроцессоров идет на смену предыдущему каждые два года и морально устаревает за 3 – 4 года. Микропроцессор вместе с другими устройствами микроэлектроники позволяют создать довольно экономичные информационные системы.

    8 ноября 1993 – выпуск Windows for Workgrounds 3.11. В ней обеспечена более полная совместимость с NetWare и Windows NT; кроме того, в архитектуру ОС внесены многие изменения, направленные на повышение производительности и стабильности и позднее нашедшее применения в Windows 95. Продукт был гораздо более доброжелательно встречен корпоративной Америкой.

     

    1.6. Пятое поколения ЭВМ (1983 г. по настоящее время)

     

    В 1993 году появились первые процессоры Pentium с частотой 60 и 66 МГц – это были 32-разрядные процессоры с 64-битной шиной данных.

    С того времени ЭВМ развивается огромными темпами. Частота работы процессов уже достигла 3,5 ГГц, а емкость ОЗУ порядка 8 Гб.

    Существуют мнение, что к 2011 году Intel выпустит процессор с 1 млрд. транзисторов, тактовой частотой 10 ГГц, изготовленный по 0,07-микронной технологии и способный выполнить 100 млрд. операций в секунду. Трудно представить весь огромный объем работ, который сможет выполнять подобный компьютер.

     

     

     

     

     

     

     

     

     

     

     

     

     

    2. ПРАКТИЧЕСКАЯ ЧАСТЬ

     

    Используя ППК на ПК, необходимо построить таблицы по приведенным ниже формам (табл. 1, 2, 3).

    Для получения значений итоговых граф в таблицах 1,2 используйте расчетную формулу: гр.5 – гр. 3 – гр. 4.

     

    Таблица 1 – свод лицевых счетов пенсионеров за январь, рубль

    Номер лицевого счета

    ФИО 

    Сумма причитающейся пенсии, руб.

    Удержания по исполнительным документам

    Выплачено пенсионеру, руб.

    1 

    2 

    3 

    4 

    5 

    И1212 

    Иванов А.А. 

    900 

    125 

     

    А1245 

    Антонов С.С. 

    1200 

    200 

     

    П1268 

    Петров И.И. 

    560 

    25 

     

    Д1378 

    Добровицкий И.С. 

    456 

      

     

    С1577 

    Сидорчук А.В. 

    304 

    100 

     

     

    Таблица 2 – Свод лицевых счетов пенсионеров за январь, рубль

    Номер лицевого счета

    ФИО

    Сумма причитающейся пенсии, руб.

    Удержания по исполнительным документам

    Выплачено пенсионеру, руб.

    1 

    2 

    3 

    4 

    5 

    И1212 

    Иванов А.А.

    950 

    130 

     

    А1245 

    Антонов С.С.

    1250 

    210 

     

    П1268 

    Петров И.И.

    610 

    30 

     

    Д1378 

    Добровицкий И.С.

    506 

    5 

     

    С1577 

    Сидорчук А.В.

    374 

    100 

     

     

    Заполните таблицу 3 числовыми данными, выполнив консолидацию по расположению.

    Таблица 3 – Свод лицевых счетов пенсионеров за январь и февраль, рубль

    Номер лицевого счета

    ФИО

    Сумма причитающейся пенсии, руб.

    Удержания по исполнительным документам

    Выплачено пенсионеру, руб.

    1 

    2 

    3 

    4 

    5 

    И1212 

    Иванов А.А.

         

    А1245 

    Антонов С.С.

         

    П1268 

    Петров И.И.

         

    Д1378 

    Добровицкий И.С.

         

    С1577 

    Сидорчук А.В.

         

    Введите текущие значения между таблицей и ее названием

    По данным таблицы 3 постройте гистограмму с заголовком, названием осей координат и легендой.

     

    1. Рассчитаем используя расчетную формулу общую сумму выплаченной пенсионерам, по данным таблиц 2 и 3, получаем (таблицы 4 и 5)

     

    Таблица 4 – свод лицевых счетов пенсионеров за январь, рубль

    Номер лицевого счета

    ФИО 

    Сумма причитающейся пенсии, руб.

    Удержания по исполнительным документам

    Выплачено пенсионеру, руб.

    1 

    2 

    3 

    4 

    5 

    И1212 

    Иванов А.А. 

    900 

    125 

    775 

    А1245 

    Антонов С.С. 

    1200 

    200 

    1000 

    П1268 

    Петров И.И.

    560 

    25 

    535 

    Д1378 

    Добровицкий И.С. 

    456 

      

    456 

    С1577 

    Сидорчук А.В. 

    304 

    100 

    204 

     

    Таблица 5 – Свод лицевых счетов пенсионеров за январь, рубль

    Номер лицевого счета

    ФИО

    Сумма причитающейся пенсии, руб.

    Удержания по исполнительным документам

    Выплачено пенсионеру, руб.

    1 

    2 

    3 

    4 

    5 

    И1212 

    Иванов А.А.

    950 

    130 

     

    А1245 

    Антонов С.С.

    1250 

    210 

     

    П1268 

    Петров И.И.

    610 

    30 

     

    Д1378 

    Добровицкий И.С.

    506 

    5 

     

    С1577 

    Сидорчук А.В.

    374 

    100 

     

     

    Заполняем таблицу 6 числовыми данными, выполнив консолидацию по расположению, с использованием данных таблиц 4,5 .

    Консолидацию по расположению следует использовать в случае, если данные всех исходных областей находятся в одном месте и размещены в одинаковом порядке; например, если имеются данные из нескольких листов, созданных на основе одного шаблона.

    Если установлено автоматическое обновление консолидации при изменении исходных данных, изменить набор ячеек и диапазонов, входящих в консолидацию, невозможно. Данная функция доступна только при обновлении консолидации вручную.

     

    Таблица 5 – Свод лицевых счетов пенсионеров за январь и февраль, рубль

    Номер лицевого счета

    ФИО

    Сумма причитающейся пенсии, руб.

    Удержания по исполнительным документам

    Выплачено пенсионеру, руб.

    1 

    2 

    3 

    4 

    5 

    И1212 

    Иванов А.А.

    1850 

    255 

    1595 

    А1245 

    Антонов С.С.

    2450 

    410 

    2040

    П1268 

    Петров И.И.

    1170 

    55 

    1115 

    Д1378 

    Добровицкий И.С.

    962 

    5 

    957 

    С1577 

    Сидорчук А.В.

    678 

    200 

    478 

     

    На основании таблицы 5 с использованием функциональных возможностей Excel строим гистограмму с заголовком, названием осей координат и легендой.

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    110513 0114 2 Этапы развития электронно вычислительной техники

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     


    ЗАКЛЮЧЕНИЕ

     

    На протяжении всего 60 лет компьютеры превратились из неуклюжих диковинных электронных монстров в мощный, гибкий, удобный и доступный инструмент. Компьютеры стали символом прогресса в XX веке. По мере того как человеку понадобится обрабатывать все большее количество информации, будут совершенствоваться и средства ее обработки – компьютеры.

    В данной работе были рассмотрены основные этапы электронного периода развития вычислительной техники. ЭВМ в своем эволюционном развитии прошли от громоздких, медленных ошибок до современных компактных настольных систем. И на этом эволюционное развития ЭВМ не остановится.

    Что нас ожидает в ближайшем будущем, мы можем только предполагать. Повысится быстродействие, надежность компьютеров. Все шире будет сфера его применения. Компьютер и сейчас не только вычислительное устройство, но является средством общения, сокращающим расстояния, своеобразный медицинский помощник.

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

     

  1. Алексеев А.П. Информатика 2001.–М.: СОЛОН-Р, 2001.
  2. Ботт Эд. Windows ХР. — М.: Диалектика, 2003.
  3. Информатика / Под ред. Н.В. Макаровой.–М.: Финансы и статистика, 2004.
  4. Информатика. Базовый курс / Под ред. С.В. Симоновича.–СПб.: Питер, 2004.
  5. Зихерт К., Ботт Э. Эффективная работа: Windows XP.– СПб.: Питер, 2003.
  6. Носситер Дж. Microsoft Exel 2002 –М.: Диалектика, 2003.
  7. Мэлони Э, Носситер Дж. Microsoft Word 2000. — М.: Диалектика, 2001.
  8. Попов В.В. Основы компьютерных технологий. –М.: Финансы и статистика, 2001.
  9. Хамахер К., Вранешич З., Заки С. Организация ЭВМ.–СПб.: Питер, 2003.
  10. Хомоненко А.Д. Основы современных компьютерных технологий//Учебное пособие для вузов. – С-Пбт: Корона принт, 2001.
  11. Фигурнов В.Э. IBM PC для пользователя — Уфа: НПО «Информатика и компьютеры», 2004.
  12. Шалдин П.А. Энциклопедия Windows XP.–СПб.: Питер, 2003.

     

     

     

     

     

     

     


     

<

Комментирование закрыто.

MAXCACHE: 1.03MB/0.00044 sec

WordPress: 23.96MB | MySQL:124 | 1,767sec