Этапы развития информационных систем. Процессы, обеспечивающие работу информационной системы

<

112713 0420 1 Этапы развития информационных систем. Процессы,   обеспечивающие работу информационной системы

1 Этапы развития информационных систем. Процессы, обеспечивающие работу информационной системы. Преимущества внедрения информационных систем в сферу управления и бизнеса

 

Информационная система — взаимосвязанная совокупность средств, методов и персонала, используемых для хранения, обработки и выдачи информации в интересах достижения поставленной цели.

Современное понимание информационной системы предполагает использование в качестве основного технического средства переработки информации персонального компьютера. В крупных организациях наряду с персональным компьютером в состав технической базы информационной системы может входить мэйнфрейм или суперЭВМ. Кроме того, техническое воплощение информационной системы само по себе ничего не будет значить, если не учтена роль человека, для которого предназначена производимая информация и без которого невозможно ее получение и представление.

Необходимо понимать разницу между компьютерами и информационными системами. Компьютеры, оснащенные специализированными программными средствами, являются технической базой и инструментом для информационных систем. Информационная система немыслима без персонала, взаимодействующего с компьютерами и телекоммуникациями.

Развитие информационных систем можно рассматривать:

1. С позиций развития самой техники, появления новой технической базы, порождающей новые информационные потребности.

2. С точки зрения совершенствования самих автоматизированных информационных систем (АИС).

Первый аспект предполагает два этапа: один — до появления ЭВМ, связанный с именами изобретателей первых вычислительных устройств, таких как Б. Паскаль, П.Л. Чебышев, Ч. Беббидж и др.; второй — с развитием ЭВМ.

Первое поколение ЭВМ (1950-е гг.) было построено на базе электронных ламп и представлено моделями: ЭНИАК, «МЭСМ», «БЭСМ-1», «М-20», «Урал-1», «Минск-1». Все эти машины имели большие размеры, потребляли большое количество электроэнергии, имели малое быстродействие, малый объем памяти и невысокую надежность. В экономических расчетах они не использовались.

Второе поколение ЭВМ (1960-е гг.) было на основе полупроводников и транзисторов: «БЭСМ-6», «Урал-14», «Минск-32». Использование транзисторных элементов в качестве элементной базы позволило сократить потребление электроэнергии, уменьшить размеры отдельных элементов ЭВМ и всей машины, вырос объем памяти, появились первые дисплеи и др. Эти ЭВМ уже использовались для решения экономических задач.

Третье поколение ЭВМ (1970-е гг.) было на малых интегральных схемах. Его представители — IBM 360 (США), ряд ЭВМ единой системы (ЕС ЭВМ), машины семейства малых с СМ I по СМ IV. С помощью интегральных схем удалось уменьшить размеры ЭВМ, повысить их надежность и быстродействие.
Четвертое поколение ЭВМ (1980-е гг.) было на больших интегральных схемах (БИС) и было представлено IBM 370 (США), ЕС-1045, ЕС-1065 и пр. Они представляли собой ряд программно-совместимых машин на единой элементной базе, единой конструкторско-технической основе, с единой структурой, единой системой программного обеспечения, единым унифицированным набором универсальных устройств. Широкое распространение получили персональные (ПЭВМ), которые начали появляться с 1976 г. в США (An Apple). Они не требовали специальных помещений, установки систем программирования, использовали языки высокого уровня и общались с пользователем в диалоговом режиме.

В настоящее время, в период информатизации, строятся ЭВМ на основе сверхбольших интегральных схем (СБИС). Они обладают огромными вычислительными мощностями и имеют относительно низкую стоимость. Их можно представить не как одну машину, а как вычислительную систему, связывающую ядро системы, которое представлено в виде супер-ЭВМ, и ПЭВМ на периферии.

Это позволяет существенно сократить затраты человеческого труда и эффективно использовать труд машины. Главной тенденцией развития АИС является постоянное стремление к улучшению. Оно достигается благодаря совершенствованию технических и программных средств, что порождает новые информационные потребности и ведет к совершенствованию информационных систем.

Охарактеризуем поколения информационных систем.

  1. Первое поколение АИС (1960-1970 гг.) строилось на базе вычислительных центров по принципу «одно предприятие — один центр обработки».
  2. Второе поколение АИС (1970-1980 гг.) характеризуется переходом к децентрализации ИС. Информационные технологии проникают в отделы, службы предприятия. Появились пакеты и децентрализованные базы данных, стали внедряться двух, трехуровневые модели организации систем обработки данных.
  3. Третье поколение АИС (1980-нач.1990 гг.): характерен массовый переход к распределенной сетевой обработке на базе персональных компьютеров с объединением разрозненных рабочих мест в единую ИС.
  4. Четвертое поколение АИС характеризуется сочетанием централизованной обработки на верхнем уровне с распределенной обработкой на нижнем. Наблюдается тенденция к возврату на крупных и средних предприятиях к использованию в ИС мощных ЭВМ в качестве центрального узла системы и дешевых сетевых терминалов (рабочих станций).
  5. Современные информационные системы на предприятиях создаются на основе локальных и распределенных сетей ЭВМ, новых технологий принятия управленческих решений, новых методов решения профессиональных задач конечных пользователей и т.д.

    История развития информационных систем и цели их использования на разных периодах следующая (таблица 1).

     

    Таблица 1 – История развития информационных систем и цели их использования на разных периодах

    Период времени 

    Концепция использования информации

    Вид информационных систем

    Цель использования

    1950 — 1960 гг. 

    Бумажный поток расчетных документов

    Информационные системы обработки расчетных документов на электромеханических бухгалтерских машинах

    Повышение скорости обработки документов

    Упрощение процедуры обработки счетов и расчета зарплаты

    1960 — 1970 гг. 

    Основная помощь в подготовке отчетов

    Управленческие информационные системы для производственной информации

    Ускорение процесса подготовки отчетности

    1970 — 1980 гг. 

    Управленческий контроль реализации (продаж)

    Системы поддержки принятия решений

    Системы для высшего звена управления

    Выборка наиболее рационального решения

    1980 — 2000 гг. 

    Информация — стратегический ресурс, обеспечивающий конкурентное преимущество

    <

    Стратегические информационные системы

    Автоматизированные офисы

    Выживание и процветание фирмы

     

    Первые информационные системы появились в 50-х гг. В эти годы они были предназначены для обработки счетов и расчета зарплаты, а реализовывались на электромеханических бухгалтерских счетных машинах. Это приводило к некоторому сокращению затрат и времени на подготовку бумажных документов.

    60-е гг. знаменуются изменением отношения к информационным системам. Информация, полученная из них, стала применяться для периодической отчетности по многим параметрам. Дня этого организациям требовалось компьютерное оборудование широкого назначения, способное обслуживать множество функций, а не только обрабатывать счета и считать зарплату, как было ранее.

    В 70-х — начале 80-х гг. информационные системы начинают широко использоваться в качестве средства управленческого контроля, поддерживающего и ускоряющего процесс принятия решений.

    К концу 80-х гг. концепция использования информационных систем вновь изменяется. Они становятся стратегическим источником информации и используются на всех уровнях организации любого профиля. Информационные системы этого периода, предоставляя вовремя нужную информацию, помогают организации достичь успеха в своей деятельности, создавать новые товары и услуги, находить новые рынки сбыта, обеспечивать себе достойных партнеров, организовывать выпуск продукции по низкой цене и многое другое.

    Процессы, обеспечивающие работу информационной системы любого назначения, условно можно представить в виде схемы, состоящей из блоков:

    – ввод информации из внешних или внутренних источников;

    – обработка входной информации и представление ее в удобном виде;

    – вывод информации для представления потребителям или передачи в другую систему;

    – обратная связь — это информация, переработанная людьми данной организации для коррекции входной информации.

    Информационная система определяется следующими свойствами:

    – любая информационная система может быть подвергнута анализу, построена и управляема на основе общих принципов построения систем;

    – информационная система является динамичной и развивающейся;

    – при построении информационной системы необходимо использовать системный подход;

    – выходной продукцией информационной системы является информация, на основе которой принимаются решения;

    – информационную систему следует воспринимать как человеко-компьютерную систему обработки информации.

    В настоящее время сложилось мнение об информационной системе как о системе, реализованной с помощью компьютерной техники. Хотя в общем случае информационную систему можно понимать и в некомпьютерном варианте.

    Чтобы разобраться в работе информационной системы, необходимо понять суть проблем, которые она решает, а также организационные процессы, в которые она включена. Так, например, при определении возможности компьютерной информационной системы для поддержки принятия решений следует учитывать структурированность решаемых управленческих задач; уровень иерархии управления фирмой, на котором решение должно быть принято; принадлежность решаемой задачи к той или иной функциональной сфере бизнеса; вид используемой информационной технологии.

     

    112713 0420 2 Этапы развития информационных систем. Процессы,   обеспечивающие работу информационной системы

    Рисунок 1 – Структура информационной системы

    Технология работы в компьютерной информационной системе доступна для понимания специалистом некомпьютерной области и может быть успешно использована для контроля процессов профессиональной деятельности и управления ими.

    Внедрение информационных систем может способствовать:

  • получению более рациональных вариантов решения управленческих задач за счет внедрения математических методов и интеллектуальных систем и т.д.;
  • освобождению работников от рутинной работы за счет ее автоматизации;
  • обеспечению достоверности информации;
  • замене бумажных носителей данных на магнитные диски или ленты, что приводит к более рациональной организации переработки информации на компьютере и снижению объемов документов на бумаге;
  • совершенствованию структуры потоков информации и системы документооборота в фирме;
  • уменьшению затрат на производство продуктов и услуг;
  • предоставлению потребителям уникальных услуг;
  • отысканию новых рыночных ниш;
  • привязке к фирме покупателей и поставщиков за счет предоставления им разных скидок и услуг.

    Роль структуры управления в информационной системе

    Общие положения

    Создание и использование информационной системы для любой организации нацелены на решение следующих задач.

    1. Структура информационной системы, ее функциональное назначение должны соответствовать целям, стоящим перед организацией. Например, в коммерческой фирме — эффективный бизнес; в государственном предприятии — решение социальных и экономических задач.

    2. Информационная система должна контролироваться людьми, ими пониматься и использоваться в соответствии с основными социальными и этическими принципами.

    3. Производство достоверной, надежной, своевременной и систематизированной информации.

    Построение информационной системы можно сравнить с постройкой дома. Кирпичи, гвозди, цемент и прочие материалы, сложенные вместе, не дают дома. Нужны проект, землеустройство, строительство и др., чтобы появился дом.

    Аналогично для создания и использования информационной системы необходимо сначала понять структуру, функции и политику организации, цели управления и принимаемых решений, возможности компьютерной технологии. Информационная система является частью организации, а ключевые элементы любой организации — структура и органы управления, стандартные процедуры, персонал, субкультура.

    Построение информационной системы должно начинаться с анализа структуры управления организацией.

    Аналогично для создания и использования информационной системы необходимо сначала понять структуру, функции и политику организации, цели управления и принимаемых решений, возможности компьютерной технологии. Информационная система является частью организации, а ключевые элементы любой организации — структура и органы управления, стандартные процедуры, персонал, субкультура.

    Построение информационной системы должно начинаться с анализа структуры управления организацией.

     

    2 Технология создания экспертных систем. Идентификация проблемной области

     

    При разработке экспертных систем часто используется концепция быстрого прототипа. Суть её в следующем: поначалу создается не экспертная система, а её прототип, который обязан решать узкий круг задач и требовать на свою разработку незначительное время. Прототип должен продемонстрировать пригодность будущей экспертной системы для данной предметной области, проверить правильность кодировки фактов, связей и стратегий рассуждения эксперта. Он также дает возможность инженеру по знаниям привлечь эксперта к активной роли в разработке экспертной системы. Размер прототипа – несколько десятков правил.

    На сегодняшний день сложилась определенная технология разработки экспертных систем, включающая 6 этапов.

    Этап 1. Идентификация. Определяются задачи, которые подлежат решению. Планируется ход разработки прототипа экспертной системы, определяются: нужные ресурсы (время, люди, ЭВМ и т.д.), источники знаний (книги, дополнительные специалисты, методики), имеющиеся аналогичные экспертные системы, цели (распространение опыта, автоматизация рутинных действий и др.), классы решаемых задач и т.д. Этап идентификации – это знакомство и обучение коллектива разработчиков. Средняя длительность 1-2 недели.

    На этом же этапе разработки экспертных систем проходит извлечение знаний. Инженер по знаниям помогает эксперту выявить и структурировать знания, необходимые для работы экспертной системы, с использованием различных способов: анализ текстов, диалоги, экспертные игры, лекции, дискуссии, интервью, наблюдение и другие. Извлечение знаний – это получение инженером по знаниям более полного представления о предметной области и методах принятия решения в ней. Средняя длительность 1-3 месяца.

    Этап 2. Концептуализация. Выявляется структура полученных знаний о предметной области. Определяются: терминология, перечень главных понятий и их атрибутов, структура входной и выходной информации, стратегия принятия решений и т.д. Концептуализация – это разработка неформального описания знаний о предметной области в виде графа, таблицы, диаграммы либо текста, которое отражает главные концепции и взаимосвязи между понятиями предметной области. Средняя длительность этапа 2-4 недели.

    Этап 3. Формализация. На этапе формализации все ключевые понятия и отношения, выявленные на этапе концептуализации, выражаются на некотором формальном языке, предложенном (выбранном) инженером по знаниям. Здесь он определяет, подходят ли имеющиеся инструментальные средства для решения рассматриваемой проблемы или необходим выбор другого инструментария, или требуются оригинальные разработки. Средняя длительность 1-2 месяца.

    Этап 4. Реализация. Создается прототип экспертной системы, включающий базу знаний и другие подсистемы. На данном этапе применяются следующие инструментальные средства: программирование на обычных языках (Паскаль, Си и др.), программирование на специализированных языках, применяемых в задачах искусственного интеллекта (LISP, FRL, SmallTalk и др.) и др. Четвертый этап разработки экспертных систем в какой-то степени является ключевым, так как здесь происходит создание программного комплекса, демонстрирующего жизнеспособность подхода в целом. Средняя длительность 1-2 месяца.

    Этап 5. Тестирование. Прототип проверяется на удобство и адекватность интерфейсов ввода-вывода, эффективность стратегии управления, качество проверочных примеров, корректность базы знаний. Тестирование – это выявление ошибок в выбранном подходе, выявление ошибок в реализации прототипа, а также выработка рекомендаций по доводке системы до промышленного варианта.

    Этап 6. Опытная эксплуатация. Проверяется пригодность экспертной системы для конечных пользователей. По результатам этого этапа может потребоваться существенная модификация экспертной системы.

    Процесс разработки экспертной системы не сводится к строгой последовательности перечисленных выше этапов. В ходе работ приходится неоднократно возвращаться на более ранние этапы и пересматривать принятые там решения.

    Этап идентификации проблемной области — определение требований к разрабатываемой ЭС, контуров рассматриваемой проблемной области (объектов, целей, подцелей, факторов), выделение ресурсов на разработку ЭС.

    Этап идентификации проблемной области включает определение назначения и сферы применения экспертной системы, подбор экспертов и группы инженеров по знаниям, выделение ресурсов, постановку и параметризацию решаемых задач.

    Начало работ по созданию экспертной системы инициируют руководители компаний. Обычно необходимость разработки экспертной системы связана с затруднениями лиц, принимающих решение, что сказывается на эффективности функционирования проблемной области. Как правило, назначение экспертной системы связано с одной из следующих областей:

    — обучение и консультация неопытных пользователей;

    — распространение и использование уникального опыта экспертов;

    — автоматизация работы экспертов по принятию решений;

    — оптимизация решения проблем, выдвижение и проверка гипотез.

    После предварительного определения контуров разрабатываемой экспертной системы инженеры по знаниям совместно с экспертами осуществляют более детальную постановку проблем и параметризацию системы. К основным параметрам проблемной области относятся следующие:

    — класс решаемых задач (интерпретация, диагностика, коррекция, прогнозирование, планирование, проектирование, мониторинг, управление);

    — критерии эффективности результатов решения задач (минимизация использования ресурсов, повышение качества продукции и обслуживания, ускорение оборачиваемости капитала и т.д.);

    — критерии эффективности процесса решения задач (повышение точности принимаемых решений, учет большего числа факторов, просчет большего числа альтернативных вариантов, адаптивность к изменениям проблемной области и информационных потребностей пользователей, сокращение сроков принятия решений);

    — цели решаемых задач (выбор из альтернатив, например, выбор поставщика или синтез значения, например, распределение бюджета по статьям);

    — подцели (разбиение задачи на подзадачи, для каждой из которых определяется своя цель);

    — исходные данные (совокупность используемых факторов);

    — особенности используемых знаний (детерминированность/ неопределенность, статичность/динамичность, одноцелевая/ многоцелевая направленность, единственность/ множественность источников знаний

     

    Список литературы

     

  1. Алексунин В.А., Родигина В.В. Электронная коммерция. М., 2005.
  2. Гаврилов О. Курс правовой информатики. М., 2012.
  3. Информатика. В 2-х кн./Под ред. Н.В. Макаровой. – М.: Финансы и статистика, 2003.
  4. Информатика для юристов и экономистов / Симонович С.В. и др.СПб, 2011.
  5. Козье Д. Электронная коммерция. М., 2009.
  6. Климченя Л.С. Электронная коммерция. М., 2011.
  7. Львов И.Б., Казеев Г.Г., Морев И.А. Информатика.– Владивосток: АВГУ. 2009.
  8. Фигурнов В.Э.. IBM РС для пользователя. — М.:ИНФРА, 2001.
  9. Юрасов А.В. Электронная коммерция. М., 2006.

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    Практическая часть

     

     

     

     


     

<

Комментирование закрыто.

MAXCACHE: 0.94MB/0.00040 sec

WordPress: 23.02MB | MySQL:121 | 1,357sec