ЕСТЕСТВЕННЫЕ И ГУМАНИТАРНЫЕ НАУКИ

<

112014 2038 1 ЕСТЕСТВЕННЫЕ И ГУМАНИТАРНЫЕ НАУКИВ основе мировоззренческой платформы любого человека лежат его представления о картине мира. Как устроена Вселенная, какие законы лежат в основе ее динамики, существовала ли она вечно, или имела начало, как и когда во Вселенной зарождается жизнь, в чем смысл жизни, какое место во Вселенной занимает человек? В зависимости от ответа на подобные вопросы человек строит свое поведение и отношение к миру.

Целью образования в числе прочего является формирование в человеке такого миропонимания, которое соответствует научным представлениям. Однако современная наука давно вышла за границы обыденного мышления человека. Некоторые научные теории кажутся совершенно далекими от понятия здравого смысла. Современная картина мира полна парадоксов. Наука занимается изучением объективно существующих (т.е. существующих независимо от чьего-либо сознания) явлений природы. Все научные дисциплины условно разделены на две основные группы: естественно-научные (занимаются изучением объектов и явлений, не являющиеся продуктом деятельности человека или человечества) и гуманитарные (изучают явления и объекты, возникшие как результат деятельности человека).

«Наука — самое важное, самое прекрасное и нужное в жизни человека» —Так выразительно и кратко оценил практическую значимость науки великий русский писатель А.П. Чехов (1860—1904). Однако такое однозначное представление о науке не всегда находит понимание в повседневной жизни. Отношение общества к науке и особенно к естествознанию определяется в основном пониманием ценности науки в данный момент времени. Ценность науки часто рассматривается с двух точек зрения, Что наука дает людям для улучшения их жизни? Что она дает небольшой группе людей, изучающих природу и желающих знать, как устроен окружающий нас мир? Ценной в первом смысле считается прикладная науки, а во втором—фундаментальная.

Любая наука ставит перед собой целью раскрытие механизмов явлений, законов, по которым строится реальность. Это позволяет прогнозировать результаты протекания процессов, использовать их в своих целях. Объектами изучения гуманитарных наук (история, социология, лингвистика, экономика, правоведение и т.п.) является человек и отношения между людьми. Поэтому изучаемые ими законы несут на себе отпечаток субъективности, что часто вызывает массу споров об их справедливости. Предметом изучения естественных наук (физика, астрономия, космология, космогония, химия, биология, география и т.п.) является природа. Формулировки законов природы не допускают субъективности, хотя, как выясняется, полностью избежать этого не удается.

Естествознание – совокупность наук о явлениях и законах природы, включающее многие естественно-научные отрасли.

Гуманитаристика – совокупность наук о человеке и отношений между людьми, изучают явления объекты, возникшие как результат деятельности человека.

Основной критерий научности в естествознании это причинность, истина, относительность.

Основной критерий научности в гуманитастике это понимание процессов, на научность воздействует человек.

Естествознание— наука о явлениях и законах природы. Современное естествознание включает множество естественно-научных отраслей: физику, химию, биологию, физическую химию, биофизику, биохимию, геохимию и др. Она охватывает широкий спектр вопросов о разнообразных свойствах объектов природы, которую можно рассматривать как единое целое.

Разделение естественно-научных проблем на прикладные и фундаментальные часто производят по чисто формальному признаку: проблемы, которые ставятся перед учеными извне, т.е. заказчиком, относят к прикладным, а проблемы, возникшие внутри самой науки,– к фундаментальным.

Слово «фундаментальный» не следует считать равноценным словам «важный», «большой» и т.п. Прикладное исследование может иметь очень большое значение и для самой науки, в то время как фундаментальное исследование: может быть и незначительным. Существует мнение, что достаточно предъявить высокие требования к уровню фундаментальных исследований для достижения желаемой цели и выполненные на высоком уровне исследования рано или поздно найдут применение.

Результаты многих фундаментальных исследований, к сожалению, никогда не найдут применения, что обусловливается различными причинами.

К настоящему времени, к сожалению, нет точного критерия определения фундаментальных и прикладных проблем, нет ясных правил отделения полезных исследований от бесполезных, и поэтому общество вынуждено идти на издержки.

Ценность фундаментальных исследований заключается не только в возможной выгоде от них завтра, но и в том, что они позволяют поддержать высокий научный уровень прикладных исследований. Сравнительно невысокий уровень исследований в отраслевых институтах часто объясняется отсутствием в них работ, посвященных фундаментальным проблемам.

В наше время естественно-научные знания превратились в сферу активных действий и представляют собой базовый ресурс экономики, по своей значимости превосходящий материальные ресурсы: капитал, землю, рабочую силу и т.п. Естественно-научные знания и основанные на них современные технологии формируют новый образ жизни, и высокообразованный человек не может дистанцироваться от фундаментальных знаний об окружающем мире, не рискуя оказаться беспомощным в профессиональной деятельности.

Среди многочисленных отраслей знаний естественно-научные знания— знания о природе — отличает ряд важнейших особенностей; прежде всего их практическая значимость и полезность (на их основе создаются различные производственные технологии), естественно-научные знания дают целостное представление о.природе, неотъемлемой частью которой является сам человек. Они расширяют кругозор и служат основной базой для изучения и усвоения всего нового, необходимого каждому человеку для управления не только своей деятельностью, но и производством, группой людей, обществом, государством. Долгое время естественно-научные знания соотносились преимущественно со сферой бытия, сферой существования человека. С течением времени они превратились в сферу действий. Если в прежние времена знания рассматривались как преимущественно частный товар, то теперь они представляют собой товар общественный.

Естественно-научные знания, как и другие виды знаний, существенно отличаются от денежных, природных/трудовых и других ресурсов» Все чаще их называют интеллектуальным капиталом, общественным благом. Знания не убывают по мере их использования, и они неотчуждаемы: приобретение одним человеком некоторых знаний никак не мешает приобретению тех же знаний другим людям, чего не скажешь, например, о купленной паре обуви. Знания, воплощенные в книге, стоят одинаково, независимо от того, сколько человек ее прочтет. Конечно, один и тот же экземпляр книги не могут купить одновременно многие покупатели, и стоимость издания зависит от тиража. Однако эти экономические факторы относятся к материальному носителю знаний—книге, а не к самим знаниям.

Вследствие своей нематериальное знания в виде информации обретают качество долговечности и для их распространения не существует границ.

 

 

 

 

 

 

 

 

 

 

 

 

 

2. СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТЕЙ ГЕЙЗЕНБЕРГА. ОТКАЗ ОТ ТРЕБОВАНИЙ КЛАССИЧЕСКОГО ДЕТЕРМИНИЗМА

 

<

Проблема предсказуемости явлений волновала и волнует ученых разных направлений, в том числе и физиков. В 1927 г. немецкий физик В.Гейзенберг открыл так называемое соотношение неопределенностей. Согласно этому соотношению невозможно определить одновременно значение обоих членов пары физических величин, характеризующих рассматриваемую атомарную систему: произведение неопределенности координаты на неопределенность импульса всегда не меньше постоянной Планка. В классической физике движение частицы в любой момент времени однозначно определяется ее движением в предыдущие моменты и силами, действующими на нее в данный момент. Принцип неопределенности в квантовой физике приводит к неконтролируемым изменениям характеристик движения, т.е. к отсутствию такой однозначности.

Экспериментальные факты (дифракция электронов, эффект Комптона, фотоэффект и многие другие) и теоретические модели, вроде боровской модели атома, с определенностью свидетельствуют, что законы классической физики становятся неприменимыми для описания поведения атомов и молекул и их взаимодействия со светом. В течение десятилетия между 1920-м и 1930-м гг. ряд выдающихся физиков ХХ в. (де Бройль, Гейзенберг, Борн, Шредингер, Бор, Паули и др.) занимался построением теории, которая могла бы адекватно описать явления микромира. В результате родилась квантовая механика, ставшая основой всех современных теорий строения вещества, можно сказать, основой (вместе с теорией относительности) физики ХХ в.

Законы квантовой механики применимы в микромире, в то же время мы с вами являемся макроскопическими объектами и живем в макромире, управляющимся совершенно иными, классическими законами. Поэтому неудивительно, что многие положения квантовой механики не могут быть проверены нами непосредственно и воспринимаются как странные, невозможные, непривычные. Тем не менее квантовая механика является, наверное, самой подтвержденной на опыте теорией, так как следствия расчетов, выполненных по законам этой теории, используются практически во всем, что нас окружает, и стали частью человеческой цивилизации.

К сожалению, используемый квантовой механикой математический аппарат довольно сложен и идеи квантовой механики могут быть изложены лишь словесно и поэтому недостаточно убедительно. С учетом этого замечания попытаемся дать хоть какое-то представление об этих идеях.

Основным понятием квантовой механики является понятие квантового состояния какого-то микрообъекта, или микросистемы (это может быть отдельная частица, атом, молекула, совокупность атомов и т.п.). Состояние может быть охарактеризовано заданием квантовых чисел: значений энергии, импульса, момента импульса, проекции этого момента импульса на какую-то ось, заряда и т.п. Как следует из модели Бора для атома водорода, энергия и другие характеристики могут в некоторых случаях принимать лишь дискретный ряд значений, нумеруемых числом n = 1, 2, … (в этом пункте квантовая механика полностью противоречит классической физике).

Таким образом, квантовая механика в общем случае оперирует не с определенными результатами измерений тех или иных физических величин, а лишь с вероятностями того, что при измерении будет получено то или иное значение величины. Этим квантовая механика принципиально отличается от классической физики.

Другое фундаментальное отличие заключается в том, что не всегда можно измерить какую-то величину со сколь угодно большой точностью. Сам акт измерения в микромире оказывает необратимое влияние на измеряемый объект.

Этот факт выражается в соотношении неопределенностей Гейзенберга:

Dpx*Dx³112014 2038 2 ЕСТЕСТВЕННЫЕ И ГУМАНИТАРНЫЕ НАУКИ

Здесь 112014 2038 3 ЕСТЕСТВЕННЫЕ И ГУМАНИТАРНЫЕ НАУКИ = h/(2p) – постоянная Планка «аш с чертой», которая столь часто фигурирует в большинстве формул квантовой механики, что физики предпочитают употреблять ее вместо h.

Численно 112014 2038 4 ЕСТЕСТВЕННЫЕ И ГУМАНИТАРНЫЕ НАУКИ = 1,05*10-34 Дж*с

Смысл соотношения неопределенностей заключается в том, что невозможно одновременное измерение дополнительных (по терминологии Н. Бора) величин, например, координаты и импульса микрообъекта. Всякая попытка увеличить точность измерения координаты приводит к потере информации об импульсе, и наоборот. Следует ясно понимать, что речь не идет о несовершенстве приборов для измерения. Ограничения, накладываемые соотношением неопределенностей, носят принципиальный характер, не зависящий от устройства приборов. Эти ограничения являются законом, действующим в микромире.

Соотношение неопределенности Гейзенберга ставило принципиальный запрет на возможность точного описания мира, что являлось краеугольным камнем механистической науки классического периода, выражавшимся в философии Лапласовского детерминизма (если мы знаем исходные данные, то можем абсолютно точно рассчитать будущее). Если в классической физике понятие случайности используется для описания поведения систем с большим количеством однотипных элементов и является лишь сознательной жертвой полноте описания во имя упрощения решения задачи, то в квантовой физике признается, что в микромире точный прогноз поведения объектов, по-видимому, вообще невозможен . Похоже на то, что сама природа не знает точного ответа на некоторые вопросы.

Кроме того, в квантовой механике принципиально отличается от классического закон сложения вероятностей взаимоисключающих друг друга (с классической точки зрения) событий (например, прохождение электрона через одну из щелей). В классической концепции вероятности всегда складываются, что и приводит к ожиданию обнаружить при открывании двух щелей картину, равную сумме изображений, получаемых от каждой из щелей в отдельности. В квантовой механике этот закон справедлив не всегда. Если же ситуация такова, что события принципиально неразличимы, суммарная вероятность вычисляется как квадрат модуля суммы комплексных функций, называемых амплитудами вероятностей. При этом вероятности не суммируются.

При движении в пустом пространстве амплитуда перехода частицы из одной точки в другую совпадает с выражением для плоской монохроматической волны. В случае больших масс, составляющих систему тел, ограничения на точность измерений стремятся к нулю, и законы квантовой механики переходят в законы классической физики. Поэтому если комната имеет две двери, то выходящий из одной двери человек, в принципе, «будет интерферировать» подобно электрону в опыте со щелями, из-за чего в пространстве возникнет несколько областей, где он сможет появиться. Однако из-за большой массы человека вероятности нахождения человека в других областях, кроме одной, будут стремиться к нулю. Поэтому мы и не наблюдаем своих двойников.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. ПРИНЦИП ОПТИМАЛЬНОСТИ

 

Если не считать, что камень заранее «просчитывает» траекторию своего движения, приходится признать, что природа из всех возможных законов выбрала только те, которые подчиняются вариационным принципам. Это положение можно назвать принципом оптимальности законов природы. Этот закон действует на всех уровнях мироустройства. Например, одной из аксиом, на которых строится современная экология, является третий закон Коммонера: природа знает лучше.

Под оптимальным можно понимать такое состояние системы в целом, которое практически не изменяется или изменяется минимально возможным образом при различных вариациях внутренней структуры (такое состояние еще называется равновесным). Наиболее показательным в этом смысле является именно принцип наименьшего действия. Так если среди возможных путей, соединяющих исходную и конечную точки траектории (рис.), провести несколько траекторий и просчитать по каждой из них величину действия, а затем чуть изменить (поварьировать) каждую из этих траекторий, то практически для всех траекторий величина действия существенно изменится, и только для параболической (то есть верной) траектории величина действия окажется практически той же.

112014 2038 5 ЕСТЕСТВЕННЫЕ И ГУМАНИТАРНЫЕ НАУКИ

 

 

 

 

 

 

112014 2038 6 ЕСТЕСТВЕННЫЕ И ГУМАНИТАРНЫЕ НАУКИ

 

Это напоминает решение задачи математического анализа по нахождению экстремума (оптимума) функции, только функция в данном случае имеет интегральный характер и называется функционалом, и минимальное значение функционал принимает не при каком-то значении аргумента, а при какой-то форме траектории (в данном случае).

Типичным проявлением принципа оптимальности является, по-видимому, принцип роста энтропии (второй закон термодинамики), который в данном случае можно сформулировать следующим образом: любая система стремится к состоянию, в котором любые вариации данного состояния не приводят к существенному изменению энтропии, которая в данном состоянии принимает значение, близкое к максимально возможному.

Резонно возникает вопрос: если в любой момент времени природа реализует только оптимальные состояния и процессы, почему же в мире так много абсурда, ошибок, далеких от понятия оптимальности? Разве есть какая-то оптимальность в поведении мухи, бьющейся о стекло? Оказывается, есть, так как в данном случае муха задействует один из самых эффективных алгоритмов поиска оптимального решения, метод случайного поиска, который гарантирует, что решение рано или поздно будет найдено, если оно в принципе возможно. Природа очень часто задействует подобные алгоритмы оптимизации. Без определенной доли ошибки, абсурда, случайности природа не смогла бы развивать и усложнять свои формы. Системы, структура которых лишена ошибки, не способны развиваться (находить оптимум). Поэтому они довольно быстро разрушаются (накапливают ошибку).

Наличие во Вселенной холистских принципов, «отбирающих» законы природы по принципу оптимальности требует переосмысления научного отношения к феномену целесообразности во Вселенной. Одним из краеугольных положений науки механистического периода было отрицание целесообразности мироустройства (антителеологичность), которая ассоциировалась с Богом. Стремление «изгнать Бога из храма науки» породило отрицание целесообразности мира вообще. Общепризнанным считалось, что миром правят «слепые» законы природы, у Вселенной нет цели, само существование Вселенной является грандиозным, но совершенно случайным событием.

Правда, это не соотносится с наблюдаемой целесообразностью мира, которая настолько явна, что породила в науке так называемый антропный принцип, гласящий, что природа устроена так потому, что в ней живет человек, способный наблюдать ее, изучать ее законы. Конечно, здесь переставлены местами причина и следствие.

Все-таки кажется странным, почему законы природы, значения мировых констант и т.п. настолько точно подогнаны друг под друга, что если бы, например, постоянная Планка изменилась хотя бы на какую-нибудь десятитысячную долю процента, то мир уже не имел бы права на существование, и Вселенная попросту исчезла бы. Мы знаем, что природа строится на существовании рациональных законов, но почему существуют именно эти законы?

Ответ на этот вопрос, по-видимому, лежит в признании двойственной природы Вселенной, которая наряду с множественным аспектом своего существования имеет целостный аспект, в котором Вселенная предстает как нечто целостное и неделимое. Пока что эта гипотеза всерьез обсуждается лишь в рамках такой науки, как философия. Естествознание крайне осторожно касается вопросов целесообразности мира. Для естествознания, в котором по-прежнему сильны принципы редукционизма, холизм является чем-то чуждым. Но принцип дополнительности говорит, что если мы отбросим из рассмотрения вторую сторону мира, нам не понять суть явлений природы.

Вообще-то, все законы, вытекающие из принципов симметрии, по большому счету являются холистскими. Поэтому хотим мы того или нет, все современное естествознание построено на принципах холизма. Мы не всегда можем знать механику того или иного явления, но мы совершенно точно знаем, что в этом явлении не будут нарушены принципы симметрии. Мы можем не знать, какие законы лежат в механике данного явления, но мы абсолютно точно знаем, что природа обязательно реализует какую-то механику, которая будет соответствовать вариационным принципам, то есть она будет наиболее оптимальной из всех возможных.

 

Алгоритм оптимальности. Рождение закона природы

Чтобы понять, как происходит рождение такой механики, точнее, рождение закона природы, целесообразно рассмотреть поведение сложных систем, таких как биосистемы. Так одним из законов экологии является принцип соответствия строения организмов требованиям окружающей среды. Особенно интересен феномен конвергенции (сходимости) морфологических признаков различных видов животных, обитающих в одинаковых условиях среды. Например, такие различные по происхождению животные, как рыбы (например акула), птицы (например пингвин) и млекопитающие (например дельфин), обитая в сходных условиях приобретают схожие формы.

Естественный отбор в живом мире приводит к тому, что вид рано или поздно «нащупает» наиболее оптимальный вариант собственной структуры. Как сказал по этому поводу П. Тейяр де Шарден, жизнь, размножаясь во множестве, заполняет собой все возможные варианты, поэтому рано или поздно оптимальный  вариант будет обязательно найден. Таким образом жизнь делает себя неуязвимой от наносимых ей ударов. Значительную роль при этом имеет право жизни на ошибку. Порождая разного рода мутантов, которые в основной своей массе оказываются нежизнеспособными, жизнь иногда нащупывает то, что является оптимумом. Какими бы ни были стартовые точки процесса поиска оптимума (рыба, птица, млекопитающее и т.п.), результат поиска в принципе оказывается предсказуем, то есть при данных конкретных условиях количество экстремумов любой целевой функции оказывается ограниченным, наиболее часто экстремум только один.

Нечто подобное происходит, по-видимому, и в неживой природе. Конечно, нельзя строить прямые аналогии от законов, по которым развивается живой мир на природу вообще. Жизнь изначально асимметрична, неживая природа подчинена принципам симметрии. Тем не менее, даже суть тех явлений, которые мы традиционно относим к неживым, костным (по терминологии Вернадского), мы понять до конца не можем, что говорит о присутствии в них асимметричной составляющей.

Именно нарушение симметрии приводит в конечном итоге к рождению Вселенной. Так в первые мгновения после Большого взрыва количество позитронов почему-то оказалось чуть меньше, чем электронов (разница всего в одну частицу на каждые 100 миллионов пар частица-античастица), антипротонов – чуть меньше чем протонов и т.п. Это нарушение симметрии мира, но именно поэтому мир выглядит так, а не иначе, именно поэтому он вообще существует, а не исчез в полной взаимной аннигиляции. Значит то, что отличает живое от неживого, в примитивном виде присутствует уже на самых нижних этажах мироздания. Значит «законы жизни» справедливы и на субквантовом уровне.

Может быть, в том и состоит суть рождения законов природы, что на всех уровнях природных систем от элементарных частиц до галактик действует механика принципа естественного отбора?  Ответ на этот вопрос призвана дать нарождающаяся в настоящее время новая научная парадигма (фундамент), в основу которой положен так называемый системный подход.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

СПИСОК ЛИТЕРАТУРЫ

 

  1. Акимов О. С. Естествознание. М.: ЮНИТИ-ДАНА, 2001.
  2. Горелов А. А. Концепции современного естествознания. — М.: Центр, 2002.
  3. Горохов В.Г. Концепции современного естествознания. — М. : ИНФРА-М, 2000.
  4. Дубнищева Т.Я. и др. Современное естествознание. — М.: Маркетинг, 2000.
  5. Основные концепции современного естествознания. — М. : Аспект — Пр, 2001
  6. Петросова Р.А. Естествознание и основы экологии. — М. : Академия, 2000.
  7. Соломатин В.А. История и концепции современного естествознания. -Яросл., ДИА-пресс, 2000.
  8. Лаптин А.И. Основания современного естествознания: Модельный взгляд на физику, синергетику, химию. — М.: Вузовская книга, 2001.

     

     


     

<

Комментирование закрыто.

MAXCACHE: 0.94MB/0.00161 sec

WordPress: 21.64MB | MySQL:119 | 1,450sec