КЛАССИФИКАЦИЯ МЕТОДОВ ИССЛЕДОВАНИЯ СКВАЖИН И ПЛАСТОВ

<

081414 2057 1 КЛАССИФИКАЦИЯ МЕТОДОВ ИССЛЕДОВАНИЯ СКВАЖИН И ПЛАСТОВГеофизические исследования скважин и пластов — комплекс физических методов, используемых для изучения горных пород в околоскважинном и межскважинном пространствах, а также для контроля технического состояния скважин. Геофизические исследования скважин делятся на две весьма обширные группы методов — методы каротажа и методы скважинной геофизики. Каротаж, также известный как промысловая или буровая геофизика, предназначен для изучения пород непосредственно примыкающих к стволу скважины (радиус исследования 1-2 м). Часто термины каротаж и ГИС отождествляются, однако ГИС включает также методы, служащие для изучения межскважинного пространства, которые называют скважинной геофизикой.

Исследования ведутся при помощи геофизического оборудования. При геофизическом исследовании скважин применяются все методы разведочной геофизики.

Основные методы исследования – метод термометрии, метод механической расходометрии, методы индукционной резистивиметрии, метод термокондуктивной дебитометрии, метод плотнометрии, метод меченого вещества, метод электромагнитной локации муфт, метод электромагнитной дефектоскопии и толщинометрии, гамма-гамма-метод цеметнометрии, метод акустической цементометрии, метод нейтронного каротажа, а также некоторые другие.

 

 

 

 

 

2 ХАРАКТЕРИСТИКА ОСНОВНЫХ МЕТОДОВ ИССЛЕДОВАНИЯ СКВАЖИН И ПЛАСТОВ

 

Метод термометрии является одним из основных методов в полном комплексе исследований скважин при исследовании эксплуатационных характеристик пласта и применяется для:

– выделения работающих (отдающих и принимающих) пластов;

– выявления заколонных перетоков снизу и сверху;

– выявления внутриколонных перетоков между пластами;

– определения мест негерметичности обсадной колонны, НКТ и забоя скважины;

– определения нефте-газо-водопритоков;

– выявления обводненных пластов;

– определения динамического уровня жидкости и нефтеводораздела в межтрубном пространстве;

– контроля работы и местоположения глубинного насоса;

– определения местоположения мандрелей и низа НКТ;

– оценки расхода жидкости в скважине, оценки Рпл и Рнас ;

– определение Тпл и Тзаб;

– контроля за перфорацией колонны;

– контроля за гидроразрывом пласта.

В перфорированных пластах термометрия применяется для выделения интервалов притока (приемистости), определения отдающих (поглощающих) пластов и установления интервалов обводнения. В неперфорированных пластах термометрия служит для прослеживания местоположения температурного фронта закачиваемых вод.

К достоинствам термометрии скважин относятся:

– возможность исследования объектов, перекрытых лифтовыми трубами;

– возможность получения информации о работе пласта, недоступного для исследования в действующей скважине (например, в скважинах, эксплуатирующихся с помощью электропогружных центробежных насосов, при высоких устьевых давлениях и т.п.), по измерениям, выполненным в остановленной скважине, после ее глушения и извлечения технологического оборудования;

– выявление слабо работающих перфорированных пластов, когда другие промысловые методы не эффективны;

– выявление интервалов обводнения независимо от минерализации воды, обводняющей пласт;

– возможность более точной отбивки подошвы нижнего отдающего (поглощающего) интервала в действующей скважине по сравнению с методами, исследующими состав и дебит смеси.

Круг потенциально решаемых задач и объемы исследований для термометрии наибольшие. Это позволяет считать термометрию одним из основных методов в комплексе геофизических методов, что обусловлено его высокой информативностью. Высокая информативность, в свою очередь, связана с высокой чувствительностью термометров к различного рода изменениям состояния скважины и пласта. В этом достоинство и недостаток метода. Поэтому для обеспечения эффективной интерпретации результатов исследования необходимо глубокое знание физических и методических основ.

Физические основы данного метода состоит в следующем. Распределение естественной температуры пород по глубине характеризуется геотермой – температурной кривой, записанной в простаивающей скважине, удаленной от мест закачки и отбора флюида. Геотерма принимается за базисную температурную кривую. Сопоставление термограмм скважин с геотермой позволяет по расхождению между ними выделять интервалы нарушения теплового равновесия, вызванного процессами, происходящими в пласте и стволе скважины, и по характерным отличиям судить о причине нарушения теплового равновесия.

При отсутствии геотермы по данной скважине используется типовая геотерма для данного месторождения. (В наклонных скважинах типовая геотерма перестраивается с учетом угла наклона данной скважины).

При применении данного метода применяется следующая аппаратура. Для измерения температуры применяют термометры сопротивления, спускаемые на геофизическом кабеле. Существуют термометры двух типов: высокочувствительные и с обычной чувствительностью до 0.3 град. Действие основано на изменении сопротивления металлического проводника с изменением температуры.

Термометр сопротивления комплексируют с приборами остальных методов ГИС. Он является частью технологического блока в сборках модулей.

Метод механической расходометрии – измерения механическими расходомерами производят для следующих целей:

– выделение интервалов притока или приемистости в действующих скважинах;

– выявление перетока между перфорированными пластами по стволу скважины после ее остановки;

– распределение общего (суммарного) дебита или расхода по отдельным пластам, разделенным неперфорированными интервалами;

– получение профиля притока или приемистости пласта по его отдельным интервалам.

Ограничения заключаются в недостаточной чувствительности в области малых скоростей потока, зависимости пороговой чувствительности от условий проведения измерений, влиянии на результаты измерений механических примесей, снижении точности измерений при многофазном притоке и многокомпонентном заполнении ствола, ограничений по проходимости прибора скважине из-за наличия пакера или сужений.

Физические основы метода состоят в следующем.
Программа работ для установления распределения суммарного дебита по пластам предусматривает запись непрерывной кривой и измерения на точках.

Непрерывная диаграмма записывается в интервалах перфорации и прилегающих к ним 10-20 метровых участках ствола.

Точечные измерения проводятся в перемычках между исследуемыми пластами, а также выше и ниже интервалов перфорации, на участках, характеризующихся постоянством показаний прибора на непрерывной кривой.

Дифференциальная дебитограмма, характеризующая распределение дебитов по отдельным интервалам притока (приемистости), представляется в виде ступенчатой кривой – гистограммы, получаемой путем перестройки интегральной дебитограммы.

При исследованиях скважины на нескольких установившихся режимах строят индикаторные кривые в виде зависимости дебитов (расходов) пластов в м3/сут от величины забойного давления.

По результатам изучения скважины в период восстановления пластового давления строят кривые спада дебита: по оси абсцисс откладывают время замера после закрытия скважины в с, по оси ординат – величину дебита в см3/с или в м3/сут (т/сут).

Аппаратура при этом применяется в следующем. Из механических дебитомеров-расходомеров на практике применяются в основном приборы с датчиками турбинного типа – свободно вращающейся вертушки. Чувствительным элементом механических расходомеров является многолопастная турбинка или заторможенная турбинка на струне. Обороты вращения первой и угол поворота второй преобразуются в регистрируемые электрические сигналы. Скорость вращения вертушки пропорциональна объемному расходу смеси.

Используют беспакерные и пакерные расходомеры, последние – только для измерения потоков жидкости. Пакер служит для перекрытия сечения скважины и направления потока через измерительную камеру, в которую помещена турбинка.

Комплексируют с термокондуктивной расходометрией и другими методами изучения «притока-состава».

Метод влагометрии (диэлькометрия) применяют:

– для определения состава флюидов в стволе скважины;

– выявления интервалов притоков в скважину воды, нефти, газа и их смесей;

– установления мест негерметичности обсадной колонны;

– при благоприятных условиях – для определения обводненности (объемного содержания воды) продукции в нефтяной и газовой скважинах.

Ограничения метода связаны с влиянием на показания влагометрии структуры многофазного потока. При объемном содержании воды в продукции свыше 40-60 % метод практически не реагирует на дальнейшие изменения влагосодержания. В наклонных скважинах при отсутствии центраторов и пакера датчик прибора реагирует на влагосодержание только у нижней стенки колонны.

Физические основы метода состоят следующее. Использование диэлькометрической влагометрии для исследования состава скважинной смеси основано на зависимости показаний метода от ее диэлектрической проницаемости.

Первичная обработка включает расчет по данным непрерывных и точечных измерений профиля объемного содержания воды в стволе скважины с использованием градуировочной зависимости без учета температурной поправки и поправок за структуру потока.

Аппаратура применяется следующая. Глубинные диэлькометрические влагомеры представляют собой LC или RC- генераторы, в колебательный контур которых включен измерительный конденсатор проточного типа. Между обкладками конденсатора протекает водонефтяная, газоводяная или многокомпонентная смесь, изменяющая емкость датчика с последующим преобразованием изменения емкости в сигналы разной частоты.

В нефтяных скважинах используют беспакерные приборы для качественной оценки состава флюида и пакерные – для количественных определений. В газовых скважинах все применяемые влагомеры – беспакерные.

Комплексируется с другими методами в рамках комплекса для оценки «притока-состава».

Метод индукционной резистивиметрии
применяется:

–для определения состава флюидов в стволе скважины;

– выявления в гидрофильной среде интервалов притока воды, включая притоки слабой интенсивности; оценки минерализации воды на забое;

– установления мест негерметичности колонны;

– разделения гидрофильного и гидрофобного типов водонефтяных эмульсий;

– определения капельной и четочной структур для гидрофильной смеси.

Ограничения связаны с одновременным влиянием на показания индукционного резистивиметра водосодержания, минерализации воды, гидрофильного и гидрофобного типов водонефтяной смеси, температуры среды. Для гидрофобной смеси показания близки к нулевым значениям удельной электрической проводимости.

Физические основы метода – резистивиметрия основана на использовании электрических свойств водонефтяной смеси в стволе скважины: удельного электрического сопротивления или проводимости.

Применятся следующая аппаратура. Скважинный индукционный резистивиметр представляет собой датчик проточно-погружного типа, состоящий из двух – возбуждающей и приемной – тороидальных катушек. Объемный виток индукционной связи образуется черех жидкость, находящуюся вокруг датчика.Существуют две модификации резистивиметров:

а) бесконтактные индукционные резистивиметры, предназначенные для измерения удельной проводимости;

б) одноэлектродные резистивиметры на постоянном токе для измерения удельного сопротивления.

Прибор комплексируют с другими модулями ГИС-контроля в единой сборке «притока-состава».

Метод термокондуктивной дебитометрии применяют:

<

– для выявления интервалов притоков или приемистости флюидов;

– установления негерметичности обсадных колонн в работающих скважинах и перетоков между перфорированными пластами в остановленных скважинах;

– для оценки разделов фаз в стволе скважины.

Недостатки метода связаны с ненадежностью количественной оценки скорости потока флюида в скважине вследствие сильной зависимости показаний от состава флюидов, направления их движения (повышенная чувствительность к радиальной составляющей потока), температуры среды и мощности нагревателя, а также недостаточной чувствительности в области высоких скоростей потока.

Сущность метода заключается в измерении температуры перегретого относительно окружающей среды датчика. При изменении относительной скорости датчика и потока жидкости увеличивается теплоотдача от датчика в окружающую среду и соответственно уменьшается температура регистрации. По мере охлаждения чувствительность к притокам ослабевает, поэтому оптимальный интервал записи не должен превышать 100м. Лучше всего по СТИ отбивается нижний работающий пласт. Перегрев в современных датчиках 5˚, но для четкого определения работающих интервалов должна быть. около 25˚.

На показания метода оказывает влияние и состав жидкости работающего пласта.

Поскольку коэффициент теплоотдачи от датчика в воде в 2 раза меньше, чем в нефти, то при переходе из воды в нефть происходит разогрев, на термодебитограмме можно увидеть границу перехода воды к нефти. (В случае, если в подошве пласта вода; если в пласте смесь – ступеньки не увидим).

Измеряемая величина – электрическое сопротивление, единица измерения – Омм.

Аппаратура применяется следующая. Термокондуктивный дебитомер представляет собой один из видов термоанемометров – термокондуктивный анемометр, работающий в режиме постоянного тока. Термодатчиком в приборе служит резистор, нагреваемый током до температуры, превышающей температуру окружающей среды. Величина приращения температуры термодатчика, позволяющая судить о скорости потока, определяется по измерениям приращения либо сопротивления датчика (прибор СТД-2), либо частоты, когда, датчик включен в частотно-зависимую схему (прибор ТЭД-2).

Метод барометрии применяют:

– для определения абсолютных значений забойного и пластового давлений, оценки депрессии (репрессии) на пласты;

– определения гидростатического градиента давления, а также плотности и состава неподвижной смеси флюидов по значениям гидростатического давления;

– оценки безвозвратных потерь давления в сужениях ствола, гидравлических потерь движущегося потока и определения плотности и состава движущейся смеси.

Ограничения применения обусловлены влиянием на показания манометров нестационарных процессов в скважине, температуры среды, структуры газожидкостного потока.

Барометрия основана на изучении поведения давления или градиента давления по стволу скважины или во времени.

Измерения выполняют глубинными манометрами, которые подразделяют на измеряющие абсолютное давление и дифференциальные. Их подразделяют также на манометры с автономной регистрацией, которые опускают на скребковой проволоке, геофизическом кабеле (с последующим оставлением на якоре в заданном интервале) или в составе пластоиспытателей, и дистанционные, работающие на геофизическом кабеле.

Преобразователи давления могут быть: пьезокристаллические (кварцевые, сапфировые), струнные и мембранные.

Прибор барометрии применяют в сборке приборов «притока-состава».

Метод акустической шумометрии применяют:

– для выделения интервалов притоков газа и жидкости в ствол скважины, включая случаи перекрытия интервалов притока лифтовыми трубами;

– интервалов заколонных перетоков газа;

– выявления типа флюидов, поступающих из пласта.

Ограничения связаны с шумами, возникающими при движении самого прибора, существованием сложной зависимости чувствительности датчика от частоты, одновременным влиянием на частоту шумов скорости потока, диаметра канала, вязкости флюида.

Акустическая шумометрия основана на регистрации интенсивности шумов, возникающих в пластах, в стволе скважины и в заколонном пространстве при движении газа, нефти и воды.

Чувствительным элементом акустической шумометрии является пьезоэлектрический преобразователь (гидрофон), расположенный в отдельном модуле сборки «притока-состава» или конструктивно совмещённый с одним из приёмников акустической цементометрии (в последнем случае измерения проводят отдельной спускоподъёмной операцией при выключенном излучателе).

Метод плотнометрии или плотностной гамма-каротаж применяют:

– для определения состава жидкости в стволе скважины;

– выявления интервалов и источников обводнения; выявления интервалов притоков в скважину нефти, газа и воды при оценке эксплуатационных характеристик пласта (в комплексе с методами расходометрии и термометрии).

Ограничения заключаются в сильной зависимости показаний от состава многофазной продукции и структуры потока флюида в стволе скважины.

Гамма-гамма-плотнометрия основана на регистрации интенсивности проходящего через скважинную среду излучения от ампульного изотопного гамма-источника. Интенсивность регистрируемого излучения определяется поглощающими свойствами скважинной среды и находится в обратной зависимости от плотности смеси в стволе скважины.

Компенсированный измерительный зонд ГГК содержит ампульный источник и два детектора гамма-излучения. Зонд располагают на выносном башмаке, который в процессе исследований прижимают к стенке скважины рабочей поверхностью, или в защитном кожухе скважинного прибора, когда к стенке скважины прижимают весь прибор.

Комплексируют в одном приборе с ГК, в сборке- с другими методами оценки «притока-состава».

Методом меченого вещества решаются следующие задачи:

– выявление затрубных циркуляций, поглощающих (отдающих) пластов, нарушений герметичности колонн;

– определение профиля приемистости и работающих мощностей с целью контроля за работой нагнетательных скважин, получения исходных данных и контроля за результатами воздействия на призабойную зону с целью интенсификации закачки воды или добычи нефти (гидроразрыв, кислотная или термическая обработка и т.д.);

– выявление обводненных интервалов разрабатываемых нефтяных пластов, положения водонефтяного контакта и оценка остаточной нефтенасыщенности прискважинной части пласта;

– выявление гидродинамической связи между отдельными пластами по площади месторождения;

– определение скорости и направления движения закачиваемого флюида.

Сущность метода меченого вещества состоит в том, что в горные породы или в скважинный флюид вводятся вещества, обладающие различными аномальными физическими свойствами относительно окружающей среды, наличие которых надежно выделяется промыслово-геофизическими методами.

В качестве меченого вещества могут использоваться радиоактивные изотопы (метод радиоактивных изотопов) и вещества, обладающие аномально высоким сечением захвата тепловых нейтронов(нейтронный метод меченого вещества). В первом случае измерения в скважине проводят методом ГК, во втором случае – методом ИНК.

Метод меченого вещества является одним из наиболее трудоемких и дорогостоящих методов контроля за разработкой нефтяных месторождений. Его применение оправдано лишь в тех случаях, когда другими методами задача надежно не решается.

В качестве радиоактивных изотопов используют элементы, дающие жесткое гамма-излучение, растворяющиеся в применяемой жидкости, характеризующиеся относительно небольшими периодами полураспада и обладающие необходимыми адсорбционными свойствами. Чаще всего используются следующие изотопы: 59Fe, 95Zr, 131I, 51Cr.

Измерительная аппаратура и методика проведения замеров в методе индикации радиоактивными изотопами не отличаются от применяющихся в гамма-методе.

Применение радиоактивных изотопов для исследования скважин связано с опасностью облучения. Это препятствие может быть устранено, если в качестве меченой жидкости использовать не радиоактивные элементы, а элементы с аномальными нейтронными характеристиками. Такими элементами являются хлор, бор и кадмий, активно поглощающие тепловые нейтроны(большое сечение захвата) и обладающие высокой гамма-активностью(эффективной эмиссирующей способностью) радиационного захвата нейтронов(особенно хлор).

Метод электромагнитной локации муфт применяют:

– для установления положения замковых соединений прихваченных бурильных труб;

– определения положений муфтовых соединений обсадной колонны;

– точной привязки показаний других приборов к положению муфт;

– взаимной привязки показаний нескольких приборов;

– уточнения глубины спуска насосно-компрессорных труб;

– определения текущего забоя скважины;

– в благоприятных условиях – для определения интервала перфорации и выявления мест нарушения (разрывы, трещины) обсадных колонн.

Метод электромагнитной локации муфт (ЛМ) основан на регистрации изменения магнитной проводимости металла бурильных труб, обсадной колонны и насосно-компрессорных труб вследствие нарушения их сплошности.

Детектор (датчик) локатора муфт представляет собой дифференциальную магнитную систему, которая состоит из многослойной катушки с сердечником и двух постоянных магнитов, создающих в катушке и вокруг нее постоянное магнитное поле. При перемещении локатора вдоль колонны в местах нарушения сплошности труб происходит перераспределение магнитного потока и индуцирование ЭДС в измерительной катушке.

Активный локатор муфт содержит две катушки, каждая из которых имеет возбуждающую и приемную обмотки. Под воздействием переменного магнитного поля, генерируемого подачей переменного напряжения на возбуждающие обмотки, в приемных обмотках возникает переменное напряжение, которое зависит от магнитных свойств окружающей среды. Информативным параметром служит разность напряжений на приемных обмотках, которая зависит от сплошности среды.

Метод электромагнитной дефектоскопии и толщинометрии. Задачами исследований являются:

– выявление местоположения башмака и муфт обсадной колонны (кондуктора, технической), размещенной за колонной, в которой ведутся исследования;

– определения толщины стенок обсадных труб;

– выявления положения и размеров продольных и поперечных дефектов, смятий и разрывов отдельных труб;

– оценка положения муфтовых соединений и качества свинчивания труб в муфтах.

Ограничением метода является сильное влияние на чувствительность прибора зазора между электромагнитным датчиком и внутренней поверхностью трубы, что требует применения сменных зондов для труб различного диаметра.

Электромагнитная дефектоскопия и толщинометрия основаны на изучении характеристик вихревого электромагнитного поля, возбуждаемого в обсадной колонне генераторной катушкой прибора.

В аппаратуре ЭМДСТ-МП используется 17 параметров дефектоскопа и 2 параметра термометра. Конкретный набор параметров определяется задачей при исследовании скважины и конструкцией скважины.

Д1-Д25 – первичные данные по которым определяются локальные дефекты из который автоматически выбираются необходимые значения для расчета стенок труб в зависимости от конструкции скважины.

Т– измеритель абсолютной температуры в цифровом значении.

дТ– высокочувствительный индикатор температуры с возможностью регистрации в одном из 4-х режимов: 0.25С; 0.5С; 1.0С; 2.0С на шкалу. Использование этого параметра позволяет выявлять интервалы негерметичности колонн и интервалы заколонных перетоков.

Гамма-гамма-метод цементометрии позволяет:

– установить высоту подъема цемента;

– определить наличие цемента и характер его распределения в интервале цементации;

– фиксировать наличие переходной зоны от цементного камня к раствору (гель-цемент);

– выявить в цементном камне небольшие раковины и каналы;

– определить эксцентриситет колонны.

Этот метод контроля за качеством цементирования обсадных колонн основан на регистрации рассеянного гамма-излучения при прохождении гамма-квантов через изучаемые среды различной плотности. Поскольку цементный камень и промывочная жидкость значительно различаются по плотности, а интенсивность вторичного гамма-излучения находится в обратной зависимости от плотности, то на регистрируемой кривой ГГМ достаточно четко выделяются участки с цементом и без него.

Для контроля качества цементирования обсадных колонн может применяться одноканальная аппаратура с регистрацией одной кривой ГГМ, трехканальная с регистрацией трех кривых ГГМ (три индикатора расположены под углом 120°), четырехканальная с регистрацией четырех кривых ГГМ (четыре индикатора расположены под углом 90°) и одноканальная с зондом, коллимированным по радиальному углу в пределах 30—50° и вращающимся в процессе измерений с заданной угловой скоростью при подъеме прибора.

Метод акустической цементометрии (АКЦ) применяют:

– для установления высоты подъема цемента;

– определения степени заполнения затрубного пространства цементом;

– количественной оценки сцепления цемента с обсадной колонной и качественной оценки сцепления цемента в горной породой.

Ограничения этого метода связаны с исследованиями высокоскоростных разрезов (V>5300 м/с), в которых первые вступления при хорошем и удовлетворительном цементировании относятся к волне, распространяющейся в породе; при скользящем контакте цементного камня с колонной, когда волна распространяется преимущественно по колонне; низкой чувствительности к отдельным дефектам цементного кольца.

Акустическая цементометрия основана на измерении характеристик волновых пакетов, создаваемых источником с частотой излучения 20-30 кГц, распространяющихся в колонне, цементном камне и горных породах. В качестве информации используют:

– амплитуды или коэффициент эффективного затухания волны по колонне в фиксированном временном окне, положение которого определяется значением интервального времени распространения волны в колонне, равного 185-187 мкс/м;

– интервальное время и амплитуды или затухание первых вступлений волн, распространяющихся в горных породах;

– фазокорреляционные диаграммы.

В приборах акустической цементометрии используются короткие трехэлементные измерительные зонды с расстоянием между ближайшим излучателем и приемником от 0.7 до 1.5 м и базой зондов (расстояние между приемниками)- в пределах 0.3-0.6 м.

Скважинный прибор центрируется.

Модуль цементометрии комплексируют с модулями ГК, ЛМ, термометрии, гамма-гамма-цементометрии и толщинометрии.

Метод интегрального гамма-каротажа применяют для решения следующих задач:

– выделения в разрезах скважин местоположения полезных ископаемых, отличающихся повышенной или пониженной гамма-активностью;

– литологического расчленения и корреляции разрезов осадочных пород;

– выделения коллекторов;

– оценки глинистости пород;

– массовых поисков радиоактивного сырья;

– в обсаженных скважинах – для выявления радиогеохимических аномалий, образующихся в процессе вытеснения нефти водой;

– увязку по глубине данных всех видов ГИС в открытом и обсаженном стволе.

Гамма–каротаж выполняют во всех без исключения необсаженных и обсаженных скважинах, заполненных любой промывочной жидкостью или газом.

Интегральный гамма-каротаж основан на измерении естественного гамма-излучения горных пород. Измеряемая величина – скорость счета в импульсах в минуту (имп/мин). Основная расчетная величина – мощность экспозиционной дозы в микрорентгенах в час (МЭД, мкР\час).

Измерительная установка ГК состоит из детектора(ов) гамма-квантов и электронной схемы. Точкой записи является середина детектора.

Зонд (модуль) применяют в качестве самостоятельного прибора или включают в состав комплексных приборов, реализующих несколько методов ГИС. Комплекс ГК комплексируется с другими модулями без ограничений.

Методы нейтронного каротажа применяются в необсаженных и обсаженных скважинах и используется для решения следующих задач:

– с целью литологического расчленения разрезов;

– определение положения текущего газонефтяного контакта (ГНК), интервалов прорыва газа, перетока, разгазирования нефти в пласте и оценки газонасыщенности;

– определение положения водонефтяного контакта ВНК в скважинах с высокой минерализацией пластовых вод.

В зависимости от регистрируемого излучения различают: нейтронный каротаж по надтепловым нейтронам – ННК-НТ; нейтронный каротаж по тепловым нейтронам – ННК-Т; нейтронный гамма-каротаж – НГК.

Областями эффективного применения нейтронного каротажа при выделении газоносных пластов, газожидкостного контакта, определении газонасыщенности являются:

– для ННК-НТ – породы с любым водородосодержанием при диаметре скважины, не превышающем 200 мм.

– для ННК-Т – породы с водородосодержанием более 10% при диаметре скважины, не превышающем 250 мм.

– для НГК – породы с водородосодержанием не менее 20%.

Нейтронный каротаж основан на облучении скважины и пород нейтронами от стационарного ампульного источника и измерении плотностей потоков надтепловых и тепловых нейтронов и (или) гамма-квантов, образующихся в результате ядерных реакций рассеяния и захвата нейтронов. Измеряемая величина – скорость счета в импульсах в минуту (имп/мин); расчетная величина – водородосодержание пород в стандартных условиях в процентах.

Переход от скорости счета к геофизическим характеристикам пород и их геологическим параметрам осуществляют с использованием зависимостей между показаниями скважинных приборов и указанными характеристиками или параметрами, установленными на моделях пород, пересеченных скважиной, или методами математического моделирования.

Измерительный зонд нейтронного каротажа содержит ампульный источник нейтронов и один или два (и более) детектора нейтронов (надтепловых или тепловых) или гамма-излучения. Точка записи – середина расстояния между источником и детектором для однозондовых приборов и середина между двумя детекторами для компенсированных (двухзондовых) приборов. ННК-НТ и ННК-Т выполняют, как правило, с помощью компенсированных измерительных зондов, содержащих два детектора нейтронов; НГК – однозондовыми приборами, содержащими источник нейтронов и один детектор гамма-излучения.

Наиболее важными эксплуатационными и метрологическими характеристиками приборов РК являются:

– диапазоны измерения геофизических характеристик;

– предел допускаемой основной погрешности измерений;

– допускаемые максимальные скорости счета;

– нестабильность скорости счета при непрерывной работе прибора;

– максимальные значения температуры и давления в скважине;

– максимальное и минимальное значения внутреннего диаметра исследуемых скважин (обсадных колонн, НКТ);

– вертикальное разрешение метода и глубинность исследований.

Значения этих характеристик и допускаемые отклонения от них регламентируются требованиями эксплуатационной документации на конкретные приборы.

Модуль НК комплексируется с другими модулями без ограничений.

Методы импульсного нейтронного каротажа применяют в обсаженных скважинах для:

– литологического расчленения разрезов и выделения коллекторов;

– выявления водо- и нефтегазонасыщенных пластов;

– определения положений водонефтяного контакта на месторождениях нефти с минерализованными (более 20 г/л) пластовыми водами;

– определения газожидкостных контактов;

– оценки пористости пород;

– количественной оценки начальной, текущей и остаточной нефтенасыщенности;

– контроля за процессом испытания и освоения скважин.

Наиболее эффективный способ применения ИНК – выполнение повторных измерений во времени в процессе изменения насыщенности коллекторов. Такие изменения могут быть вызваны естественным расформированием зоны проникновения, обводнением пластов в ходе их выработки, целенаправленными технологическими операциями, включающими в себя закачку в породы растворов веществ с аномальными нейтронно-поглощающими свойствами.

Импульсный нейтронный каротаж в интегральной модификации основан на облучении скважины и породы быстрыми нейтронами от импульсного источника и измерении распределения во времени интегральной плотности тепловых нейтронов или гамма-квантов, образующихся в результате ядерных реакций рассеяния и захвата нейтронов. В зависимости от регистрируемого излучения различают: импульсный нейтрон-нейтронный каротаж по тепловым нейтронам (ИННК) и импульсный нейтронный гамма-каротаж (ИНГК). Для обоих видов каротажа измеряемыми величинами являются скорости счета во временных окнах, основными расчетными- макросечение захвата тепловых нейтронов в единицах захвата, равных 10-3 см-1 , и водонасыщенная пористость пород, в процентах.

Количественная оценка насыщенности коллекторов по данным ИННК базируется на зависимости среднего времени жизни тепловых нейтронов в породах от характера и содержания насыщающих флюидов. Уменьшение плотности тепловых нейтронов во времени в однородной среде происходит по экспоненциальному закону с интенсивностью, определяемой нейтронопоглощающими свойствами среды.

Определение коэффициентов газонасыщенности по материалам ИННК основано на различии декрементов затухания в газе и в воде. Указанное различие, а, следовательно, эффективность методики увеличивается с ростом минерализации воды и уменьшением пластового давления.

Измерительный зонд (ИНК) содержит излучатель быстрых (14 МэВ) нейтронов, один или два детектора тепловых нейтронов или гамма-излучения. Точка записи – середина расстояния между излучателем и детектором, для двухзондовых приборов – середина расстояния между детекторами.

Нормируемыми метрологическими характеристиками являются макросечение захвата тепловых нейтронов и коэффициент водонасыщенной пористости, который рассчитывают по измеренным скоростям счета импульсов.

Модуль ИНК обычно комплексируют с модулями ГК и ЛМ.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

 

  1. Калинникова М. В., Головин Б. А., Головин К. Б. Учебное пособие по геофизическим исследованиям скважин.  Саратов, 2005. 
  2. Мейер В. А. Геофизические исследования скважин. М., 1981.
  3. Сохранов Н.Н. Техническая инструкция по проведению геофизических исследований в скважинах. М., 1985.
  4. Техническая инструкция по проведению геофизических исследований и работ приборами на кабеле в нефтяных и газовых скважинах. М., 2002.
  5. Хаматдинов Р.Т. Техническая инструкция по проведению геофизических исследований и работ на кабеле в нефтяных и газовых скважинах. М., 2001.
  6. Хмелевской В. К. Геофизические методы исследования земной коры. Часть 1. –М.,: Международный университет природы, общества и человека «Дубна», 1997.
  7. Хуснуллин М.Х. Геофизические методы контроля разработки нефтяных пластов. М., 1989.

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     


     

<

Комментирование закрыто.

WordPress: 22.48MB | MySQL:118 | 2,163sec