Определение постоянной Хаббла и оценка времени развития Вселенной

<

111714 0113 1 Определение постоянной Хаббла и оценка времени развития Вселенной

106 Задача

 

Дописать ядерную реакцию и определить порядковый номер и массовое число второго ядро. Дать символическую запись ядерной реакции и определить ее энергетический эффект

7N14 + 2He48O17 + ?

 

Ответ

 

При протекании ядерных реакций сохраняется суммарный заряд частиц, вступающих в реакцию, и их массовое число. В приведенном примере ядерной реакции суммарный заряд исходных частиц: ядра атома азота и альфа-частицы (ядра атома гелия) равен 9, так же как и суммарный заряд ядра изотопа кислорода и протона (ядра атома водорода). Массовое число частиц до и после реакции равно 18. Эти особенности ядерных реакций и реакций радиоактивного распада являются следствием закона сохранения заряда и сохранения числа нуклонов в ходе ядерной реакции.

7N14 + 2He48O17 + 1H1

Энергия реакции равна

 

111714 0113 2 Определение постоянной Хаббла и оценка времени развития Вселенной

Q = 931((14,0067 + 4,00260) –(15,994 + 1,00783)) = +937,95457 МэВ

Знак «+» означает, что энергия выделяется.

 

 

 

 

 

 

116.

 

Закон Хаббла (закон всеобщего разбегания галактик) — правило физической космологии, согласно которому красное смещение удалённых объектов пропорционально их расстоянию от наблюдателя. Таким образом, чем дальше от нас галактика, тем быстрее она от нас удаляется.

Другими словами, между расстояниями D до галактик и скоростями их удаления Vr (разбегания) наблюдается линейная зависимость:

111714 0113 3 Определение постоянной Хаббла и оценка времени развития Вселенной.

Чем дальше от наблюдателя космический объект (галактика, квазар), тем быстрее он удаляется.

На каждый миллион
парсек расстояния до объекта его скорость убегания увеличивается приблизительно на 75 км/с.

График из оригинальной работы Хаббла
1929 года. В величинах расстояний Хабблом была допущена ошибка (обусловленная несовершенством тогдашних средств наблюдения), исправленная позднее Сендиджем, Бааде и др. Со времени работы Хаббла, значение постоянной подправили примерно в 8 раз. Хаббл считал, что она составляет около 500 км/с на мегапарсек. Современное значение 70—80 км/с на мегапарсек.

Более точно:

111714 0113 4 Определение постоянной Хаббла и оценка времени развития Вселенной

или

111714 0113 5 Определение постоянной Хаббла и оценка времени развития Вселенной,

Где cскорость света,

z = δl/l — красное смещение (относительное увеличение длин волн спектральных линий в спектрах галактик),

H0постоянная Хаббла.

С помощью этого закона можно рассчитать так называемый Хаббловский возраст Вселенной (в предположении, что «разбегание» галактик действительное):

111714 0113 6 Определение постоянной Хаббла и оценка времени развития Вселенной,

этот возраст лишь по порядку соответствует возрасту Вселенной, рассчитываемому по стандартной космологической модели Фридмана.

С точки зрения классической механики, закон Хаббла можно наглядно объяснить следующим образом. Когда-то давно Вселенная образовалась в результате Большого взрыва. В момент взрыва различные частицы материи (осколки) получили различные скорости. Те из них, которые получили бо́льшие скорости — соответственно успели к настоящему моменту улететь дальше, чем те, которые получили меньшие скорости. Если провести численный расчёт, то окажется, что зависимость расстояния от скорости оказывается линейной. Кроме того, получается, что эта зависимость одна и та же для всех точек пространства, то есть, по наблюдениям за разлетающимися осколками нельзя найти точку взрыва: с точки зрения каждого осколка, именно он находится в центре. Однако, несмотря на такую наглядность, следует помнить, что расширение Вселенной должно описываться не классической механикой, а общей теорией относительности.

Первое замечание касается того, учитывается ли при наблюдениях тот факт, что из-за того, что свет идёт от галактик миллионы лет, мы наблюдаем их в прошлом. В результате, поскольку они удаляются от нас, в настоящий момент они должны находиться уже дальше. Вопрос: для какого из двух расстояний определена зависимость Хаббла? Ответ: до середины прошлого века это не имело значения. Из графика Хаббла видно, что наибольшие скорости галактик, рассмотренных Хабблом, составили до 1000 км/с. В принципе это большая скорость, но за время движения света от них до Земли, они всё равно успели сдвинуться на незначительный процент общего расстояния.

<

Второе замечание заключается в том, что расширение Вселенной не является простым разлётом галактик в пустом пространстве. Оно заключается в динамическом изменении самого пространства. Непонимание этого факта часто заставляет делать неверные заключения авторов даже серьёзной литературы. Например, часто говорят, что скорость убегания галактик не должна превышать скорость света и потому на тех расстояниях, где это должно наблюдаться, должны наблюдаться и отклонения от закона Хаббла. Это не так: согласно общей теории относительности, должны существовать и наблюдаться галактики, убегающие быстрее света.

Закон Хаббла установлен экспериментально Э. Хабблом в 1929 для галактик, до которых было определено расстояние по ярчайшим звёздам. Исходное наблюдение состояло в том, что красные линии в спектрах внегалактических туманностей смещаются пропорционально расстоянию до них. Позднее закон был подтверждён по наблюдениям большого количества галактик.

За несколько лет до экспериментального открытия Александром Фридманом были теоретически решены уравнения Эйнштейна для всей Вселенной и в результате было получено, что если распределение вещества в ней в среднем равномерно, то она должна или сжиматься или расширяться, причём в последнем случае должен наблюдаться линейный закон между расстоянием и скоростью убегания. Эта особенность решений Фридмана была сразу же отождествлена с явлением, открытым Хабблом.

В соответствии с этой (общепринятой) моделью космологическое красное смещение нельзя интерпретировать как Эффект Доплера, так как получаемая из наблюдаемого z по формулам этого эффекта скорость не соответствует (лишь приближенно равна) никакой скорости в смысле изменения космологического расстояния между галактиками. Галактики неподвижны (за исключением пекулярных собственных скоростей), а расширяется пространство, что и вызывает расширение волнового пакета. (См. в статье Космологическое красное смещение). Так соотношение

111714 0113 7 Определение постоянной Хаббла и оценка времени развития Вселенной

является приближённым, в то время как равенство

111714 0113 8 Определение постоянной Хаббла и оценка времени развития Вселенной

где D — расстояние в данный момент, есть точное равенство, то есть красное смещение линейно связано с расстоянием только приближённо для близких галактик, а скорость их удаления линейно возрастает с расстоянием точно. Таким образом, в последней формуле скорость V не соответствует скорости, рассчитываемой по эффекту Допплера.

В процессе расширения, если оно происходит равномерно, постоянная Хаббла должна уменьшаться, и индекс «0» при её обозначении указывает на то, что величина Н0 относится к современной эпохе. Величина, обратная постоянной Хаббла должна быть в таком случае равна времени, прошедшему с момента начала расширения, то есть, возрасту Вселенной.

Значение Н0 определяется по наблюдениям галактик, расстояния до которых измерены без помощи красного смещения (прежде всего, по ярчайшим звёздам или цефеидам). Большинство независимых оценок Н0 дают для этого параметра значение 70—80 км/с на мегапарсек. Это означает, что галактики, находящиеся на расстоянии 100 мегапарсек, удаляются от нас со скоростью 7000—8000 км/с. В настоящее время (2005) наиболее надёжной (хотя и модельно зависимой) считается оценка Н0=(72±3) км/с/Мпк, полученная из сопоставления нескольких массивов наблюдательных данных (WMAP, 2dFGRS и т. д.).

Проблема оценки Н0 осложняется тем, что, помимо космологических скоростей, обусловленных расширением Вселенной, галактики ещё обладают собственными (пекулярными) скоростями, которые могут составлять несколько сотен км/с (для членов массивных скоплений галактик — более 1000 км/с). Это приводит к тому, что закон Хаббла плохо выполняется или совсем не выполняется для объектов, находящихся на расстоянии ближе 10-15 млн св. лет, то есть как раз для тех галактик, расстояния до которых наиболее надёжно определяются без красного смещения.

Закон Хаббла плохо выполняется и для галактик на очень больших расстояниях (в миллиарды св. лет), которым соответствует величина z > 1. Расстояния до объектов с таким большим красным смещением теряют однозначность, поскольку зависят от принимаемой модели Вселенной и от того, к какому моменту времени они отнесены. В качестве меры расстояния в этом случае обычно используется только красное смещение.

В наше время наблюдениями, говорящими в пользу существования тёмной энергии, были, по-видимому, обнаружены отклонения от линейного закона Хаббла (как связи красного смещения с расстоянием). Было обнаружено, по-видимому, что наша Вселенная расширяется с ускорением. Этот факт не отменяет закона Хаббла, так как последний действует на более близких расстояниях, чем эти новые эффекты.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

126 Наследственные заболевания, связанные с хромосомными нарушениями

 

Наследственное заболевание — заболевания, возникновение и развитие которых связано с дефектами в программном аппарате клеток, передаваемыми по наследству через гаметы. Термин употребляется в отношении полиэтиологических заболеваний, в отличие от более узкой группы — генные болезни.

В основе наследственных заболеваний лежат нарушения (мутации) наследственной информации — хромосомные, генные и митохондриальные.

Заболевания, обусловленные изменениями числа и структуры хромосом (геномные и хромосомные мутации соответственно), называются хромосомными болезнями. При хромосомных болезнях нарушается сбалансированность набора генов и наблюдаются отклонения от нормального развития организма. Это приводит к внутриутробной гибели эмбрионов и плодов, врожденным порокам развития и другим клиническим проявлениям. При хромосомных болезнях отклонения от нормального развития коррелируют, как правило, со степенью хромосомного дисбаланса. Чем больше хромосомного материала вовлечено в мутацию, тем раньше проявляется заболевание и тем значительнее нарушения в физическом и психическом развитии индивидуума. Избыток генетического материала проявляется, как правило, легче, чем его недостаток.

Хромосомные болезни обусловлены грубым нарушением наследственного аппарата — изменением числа и структуры хромосом. Типичная причина, в частности, — алкогольная интоксикация родителей при зачатии («пьяные дети»).

Сюда относятся синдромы Дауна, Клайнфельтера, Шерешевского — Тернера, Эдвардса, «кошачьего крика» и другие.

В процессе клеточного деления может случиться так, что отдельные пары хромосом не расходятся. В этом случае в одной из вновь образовавшихся клеток будет большее количество хромосом, чем в другой. В результате перемещения многих генов, сцепленных в хромосоме, серьезно нарушается обмен веществ как в клетке, где оказывается лишняя хромосома, так и в клетке, где ее недостает.

 

Особенно большие сдвиги в организме происходят, если случается нерасхождение хромосом в половых клетках при образовании гамет, ибо после оплодотворения каждая половая клетка организма будет иметь неправильный набор хромосом, так называемый патологический кариотип, внешне проявляющийся определенной картиной болезни.

Заболевания, связанные с нарушениями хромосомного набора, называют хромосомными. Не только лишние или недостающие хромосомы ведут к возникновению болезни, но и перемещение отдельных участков одних хромосом на другие (транслокации), потеря кусков хромосом (делеции), вставки дополнительных участков (инсерции), удвоения (дупликации) и другие так называемые структурные перестройки хромосом приводят к возникновению хромосомных болезней.

Хромосомные болезни встречаются примерно у одного из 180 новорожденных. Основная масса зародышей (не менее 60 процентов) с дисбалансом хромосом погибают в очень ранний эмбриональный период. И это, по-видимому, наилучший выход, придуманный самой природой. Чаще всего женщины даже не замечают подобной беременности, а расценивают свое состояние, как задержку менструального цикла. Хуже, когда дети с хромосомными перестройками доживают до рождения. В большинстве случаев для таких детей характерны тяжелые множественные врожденные пороки развития, умственная отсталость, различные микроаномалии.

Как правило, хромосомные болезни представляют единичные (спорадические) случаи в семье, возникающие вследствие вновь возникших мутаций в половых Причины возникновения хромосомных болезней различны. Это могут быть воздействие химических вредностей, интоксикации, обусловленные острыми и хроническими болезнями, «старение» половых клеток, связанное с возрастом родителей (особенно матери), лучевые воздействия, к которым особенно чувствительны половые клетки, и др.

Изменение числа хромосом может быть как в сторону появления лишней хромосомы (например, трисомия), так и потери одной из хромосом (моносомия). Иногда наблюдаются структурные нарушения в пределах одной, двух или более хромосом, которые не сопровождаются изменениями генного баланса.

Все хромосомные болезни подразделяют на болезни, обусловленные аномалиями аутосом и аномалиями половых хромосом.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

136 Генетическая задача

 

У человека дальтонизм (цветовая слепота) обусловлен рецессивным геном (а), расположенным в Х-хромосоме. У супругов с нормальным зрением родился ребенок с дальтонизмом. Кто это – сын или дочь?


Решение

 

111714 0113 9 Определение постоянной Хаббла и оценка времени развития Вселенной

 

Ген, кодирующий пигмент, реагирующий на синий цвет, лежит в седьмой хромосоме, поэтому нарушение восприятия синего цвета наследуется независимо от пола. Это нарушение встречается весьма редко, так как оно проявляется только у гомозигот.

Таким образом, чтобы ребенок родился с дальтонизмом, нужно чтобы кто-то из родителей был болен дальтонизмом, об этом нет указания в задаче. Но если отец здоров, а мать носитель, то данный ребенок – сын.

Список литературы

 

  1. Акимова Т. А., Хаскин. В.В. Экология. –М.: ЮНИТИ-ДАНА, 2007.
  2. Горелов А. А. Концепции современного естествознания. — М.: Центр, 2008.
  3. Горохов В.Г. Концепции современного естествознания. — М. : ИНФРА-М, 2004.
  4. Миронов А.В. Концепции современного естествознания. М., 2007.
  5. Рузавин Г.И. Концепции современного естествознания. М.,2005.

     


     

<

Комментирование закрыто.

MAXCACHE: 0.93MB/0.00031 sec

WordPress: 22.82MB | MySQL:124 | 1,359sec