Шкала измерений в социологии

<

100613 0027 1 Шкала измерений в социологии

1.1 Шкала и понятие шкалирования

 

Одна из проблем, наиболее часто встречающихся при планировании опроса и подготовке инструментария для него, заключается в том, каким образом следует приписывать единое репрезентативное значение или оценку (score) некоторому сложному отношению или поведению. В качестве примера рассмотрим, как можно было бы измерить предубежденность населения против студентов колледжей. Такая предубежденность может проявляться в самых разных формах в зависимости от того, на каких признаках студентов сосредоточено внимание конкретного индивида (респондента). Так, некоторые люди судят о студентах по одежде, другие – по манерам, третьи – по поведению в повседневной жизни, по социально-экономическому статусу и даже по уровню личной гигиены. У иных стереотипное мнение могло сложиться на основании всего одной-двух встреч (приятных либо нет) с какими-то конкретными студентами; а кто-то, возможно, вообще едва ли способен отличить студента от других людей. Элементы суждения могут сильно варьировать по содержанию, направленности, степени оценки, но каждый и них представляет собой – по крайней мере потенциально – компонент более широкого понятия «предубежденность».

Если необходимо учесть все эти моменты, то нам надо подобрать такой инструмент, который сумеет выявлять и измерять как можно больше подобных составных элементов понятий и одновременно будет достаточно точен, чтобы позволять осмысленным образом определять степень проявления общего понятия в единичном наблюдении. Иными словами, необходимо такое средство, которое бы улавливало и отображало понятие, подобное понятию «предубежденность», во всех деталях, а кроме того, показывало бы нам, сколько (какая доля) этого понятия содержится в том или ином случае или ответе респондента. Одно из таких средств называется шкалированием.

Шкалирование – это процедура объединения ряда относительно узких показателей (например, это пункты опроса, касающиеся отдельных отмеченных респондентами признаков студентов) в единую суммарную меру, которая принимается за отображение более широкого основного понятия (в нашем случае – предубежденности), частью которого является каждый отдельный признак. Так, можно было бы измерить отношение респондента к различным видам поведения студентов (например, к тому, сколько они употребляют алкогольных напитков, или к тому, сколь шумны их вечеринки) или к манерам студентов (к тому, насколько они чванливы, самонадеянны или невнимательны к другим людям), но ни один из этих признаков в отдельности мы не могли бы принять за полноценное отображение столь широкого понятия, как предубежденность. Нам скорее следовало бы каким-то образом свести все эти меры воедино, чтобы иметь возможность делать выводы о более общей точке зрения, которую каждая из них в чем-то дополняет и отображает. Более того, нам нужно решить эту задачу так, чтобы можно было сравнивать количество предубежденности (или любого другого измеряемого нами понятия), содержащееся в ответе одного респондента, с количеством ее, содержащимся в ответе другого респондента, и в конечном итоге судить о том, кто из респондентов предубежден более.

Унифицирующая мера, отображающая определенное основное понятие, называется шкалой. Частное значение степени проявления в каждом данном случае основного понятия называется шкальной оценкой. Шкалирование, или построение шкалы, – это процедура, с помощью которой исследователь формирует шкалу и приписывает отдельным случаям оценки на этой шкале.

Шкалирование — метод моделирования реальных процессов при помощи шкал.

Шкалирование — метод присвоения числовых значений отдельным атрибутам некоторой системы.

Шкалирование позволяет разбить описание сложного процесса на описание параметров по отдельным шкалам. В результате в применении к экономическим задачам, например, можно получить представление об области интересов потребителя, исследовать важность каждой шкалы для него.

Шкала (лат. scala — лестница) — сопоставление результатов измерения какой-либо величины и точек числовой прямой.

Шкала — это множество обозначений, отношения между которыми отражают отношения между объектами эмпирической системы. Шкалой можно назвать результаты измерения, полученные в исследовании, а также инструмент измерения (т.е. систему вопрсов), опросник, тест).

 

1.2 Виды шкал и типы шкалирования

 

Шкалы разделяются по типу, в соответствии с тем, какие отношения они отражают. Кроме того, каждой шкале соответствуют допустимые для данной шкалы математические преобразования. Типы шкал имеют иерархическую упорядоченность по сложности. В психометрии, эконометрик, прикладной статистике принята следующая классификация шкал, предложенная в 1946 году Стэнли Смитом Стивенсом:

– шкала наименований (номинальная) – простейшая из шкал. Числа используются для различения объектов. Отображает те отношения, поcредством которых объекты группируются в отдельные непересекающиеся классы. Номер класса не отражает его количественного содержания. Примером шкалы такого рода может служить классификация испытуемых на мужчин и женщин, нумерация игроков спортивных команд и др. Номера телефонов, паспортов, штрих-коды товаров, индивидуальные номера налогоплательщиков измерены в шкале наименований;

– порядковая шкала – отображение отношений порядка. Субъекты в данной шкале ранжированы. Для данной шкалы допустимо монотонное преобразование. Такая шкала груба, потому что не учитывает разность между субъектами шкалы. Пример такой шкалы: балльные оценки успеваемости (неудовлетворительно, удовлетворительно, хорошо, отлично), шкала Мооса;

– интервальная шкала – помимо отношений указанных для шкал наименования и порядка, отображает отношение расстояния (разности) между объектами. Разности во всех точках данной шкалы равны. Для неё допустимым является линейное преобразование. Это позволяет приводить результаты тестирования к общим шкалам и осуществлять, таким образом сравнение показателей. Пример: шкала Цельсия.

– шкала отношений – в отличие от шкалы интервалов может отражать то, во сколько один показатель больше другого. Шкала отношений имеет нулевую точку, которая характеризует отсутствие измеряемого качества. Данная шкала допускает преобразование подобия (умножение на константу). Определение нулевой точки — сложная задача для психологических исследований, накладывающая ограничение на использование данной шкалы. С помощью таких шкал могут быть измерены масса, длина, сила, стоимость (цена). Пример: шкала Кельвина (температур, отсчитанных от абсолютного нуля, с выбранной по соглашению специалистов единицей измерения — градус Цельсия).

Шкала разностей – начало отсчёта произвольно, единица измерения задана. Допустимые преобразования — сдвиги. Пример: измерение времени.

Абсолютная шкала – в ней присутствует дополнительный признак — естественное и однозначное присутствие единицы измерения. Эта шкала имеет единственную нулевую точку. Пример: число людей в аудитории.

С вопросом о типе шкалы непосредственно связана проблема адекватности методов математической обработки результатов измерения. В общем случае адекватными являются те статистики, которые инвариантны относительно допустимых преобразований используемой шкалы измерений.

 

100613 0027 2 Шкала измерений в социологии

Рис. 1. Классификация методов шкалирования

 

Используемые в социологических исследованиях методы шкалирования условно можно разделить на сравнительные и несравнительные.

Сравнительные шкалы (comparative scales) предполагают прямое сравнение рассматриваемых объектов. Например, респондентов спрашивают, предпочитают они Соке или Pepsi. Данные сравнительных шкал считаются относительными и имеют свойства только порядковых и ранговых величин. Поэтому сравнительное шкалирование также называют неметрическим. Как показано на рис. 1, сравнительные шкалы включают попарное сравнение, порядковое ранжирование, шкалы постоянной суммы, Q-copтировку и другие операции.

Сравнительные шкалы (comparative scales) – один из двух методов шкалирования, заключающийся в прямом сравнении рассматриваемых объектов.

Основное преимущество сравнительного шкалирования заключается в возможности распознавания незначительных различий между рассматриваемыми объектами. При сравнении двух объектов респондентам приходится выбирать между ними. Кроме того, респонденты выполняют задание исходя из заданных баллов предпочтения. Благодаря этому сравнительные шкалы легко воспринимать и применять. Другое преимущество этих шкал — сравнительно меньшее количество используемых теоретических допущений, а также устранение влияния гало-эффекта, или эффекта переноса, когда из-за сильного предпочтения одного товара искажается сравнительная оценка других. Основной недостаток сравнительных шкал — их порядковая природа и ограничение анализа рамками определенного количества рассматриваемых объектов. Например, для сравнения RC Cola с Соке и Pepsi следует проводить новое исследование. Эти недостатки в значительной степени устраняются при использовании несравнительных методов шкалирования.

При использовании несравнительных шкал (noncomparative scales), также называемых монадическими или метрическими, каждый объект исходной рассматриваемой совокупности оценивается независимо от других. Полученные данные считаются измеренными в интервальной или относительной шкале.

Несравнительные шкалы (noncomparative scales) – один из двух методов шкалирования, заключающийся в самостоятельной оценке каждого объекта.

Например, респондентов могут попросить оценить Соке по шкале предпочтений от 1 до 6 (1 — абсолютно не нравится, 6 — очень нравится). Таким же образом оцениваются Pepsi и RC Cola. Из рис. 1 видно, что несравнительные рейтинговые шкалы могут быть непрерывными или детализированными. Детализированные рейтинговые шкалы, в свою очередь, разделяются на шкалы: Лайкерта (Likert), семантического дифференциала и Стэпела (Stapel). В маркетинговых исследованиях чаще всего используется несравнительное шкалирование. В этом разделе рассматриваются сравнительные методики шкалирования.

 

 

1.3 Основные проблемы при построении шкал

 

Из вышеизложенного шкалирование может показаться достаточно простой, прямолинейной процедурой, когда в задачу исследователя входит просто идентифицировать ряд компонентов основного понятия, установить, каким показателем можно измерить каждый из них, затем объединить эти показатели в суммарную оценку «…с помощью произнесения нескольких волшебных слов или статистических заклинаний, и – раз-два! – дело сделано». К сожалению, эта видимая простота обманчива, потому что при отборе и интерпретации компонентов шкалы нам может встретиться целый ряд подводных камней, требующих особой внимательности. Во-первых, это проблемы, связанные с понятиями валидности (обоснованности) и надежности.

<

Валидность – это свойство, определяемое ответом на вопрос: «Действительно ли мы измеряем именно то, что хотим измерить?». В теперешнем нашем контексте этот вопрос может быть несколько трансформирован следующим образом: «Есть ли основания полагать, что каждый из отдельных компонентов шкалы (каждый из конкретных вопросов) действительно напрямую связан с основным понятием и что все компоненты в совокупности полностью охватывают это понятие?». Иначе говоря, необходимо должны задаться вопросом: «А есть ли реальный смысл в том, чтобы объединять между собой ряд частных показателей, и – коли уж мы это сделали – есть ли смысл навешивать на этот ряд показателей избранный нами ярлык основного понятия?». Так, обращаясь снова к примеру со студентами, необходимо узнать, во-первых, действительно ли мнение человека о поведении студентов непосредственно связано с его мнением о студенческом стиле одежды или о манерах студентов, и во-вторых, действительно ли все эти мнения в совокупности отражают степень предубежденности данного лица против студентов.

Что касается надежности, то она определяется ответом на вопрос: «Вне зависимости от того, что конкретно мы измеряем, последовательно ли мы это делаем?». Применительно к шкалированию этот вопрос трансформируется в заботу о том, чтобы различные показатели, являющиеся компонентами шкалы, были связаны друг с другом последовательным и осмысленным образом. На деле нас интересует здесь не то, позволяет ли данный набор вопросов или показателей отличить яблоки от апельсинов, а скорее то, позволяет ли этот набор последовательно сортировать уже идентифицированные нами яблоки по размеру, цвету и т. п. в соответствии с некоторым стандартом. Если да, то объединение различных мер будет говорить о яблоках больше, чем любая отдельная мера. Но если наши стандарты (цвета, размера и т. п.) непоследовательны или двусмысленны, то основанные на них наблюдения могут оказаться ложными.1

Возможно, другой пример поможет сделать эти положения более понятными. Рассмотрим некую шкалу, предназначенную для того, чтобы каждый респондент выразил свое согласие или несогласие со следующими утверждениями:

1. Кубинцы дурны, и им нельзя верить

2. Французы дурны, и им нельзя верить

3. Японцы дурны, и им нельзя верить

4. Китайцы дурны, и им нельзя верить.

Давайте представим, что перед нами шкала для измерения ксенофобии, то есть страха и недоверия к иностранцам. Предположительно, чем с большим количеством утверждений согласится респондент, тем выше уровень ксенофобии, который мы можем ему приписать. Но будет ли дело обстоять именно так? Человек, полагающий, что только кубинцы дурны и им нельзя верить, утверждает это более в силу антикоммунизма, чем ксенофобии. В свою очередь человек, полагающий, что только японцы и китайцы дурны и им нельзя верить, утверждает это более в силу расизма, чем ксенофобии. И даже респондент, считающий, что все четыре группы дурны и им нельзя верить, как выясняется при ближайшем рассмотрении, страдает не ксенофобией, а скорее чувством, что все люди, или все правительства (даже той страны, где он живет) дурны и им нельзя верить. И следовательно, поскольку мы не можем с уверенностью утверждать, что эта шкала измеряет ксенофобию по существу, то эта шкала несостоятельна. И можем ли мы вообще доверять ей? Составлена ли она продуманно даже для измерения уровня ксенофобии? Страх и недоверие к китайцам, например, возможно, являются индикатором по меньшей мере двух совершенно различных особенностей, одна из которых идеологическая, вторая же имеет своей причиной расизм, и два респондента могут дать одинаковый ответ по совершенно разным причинам. И будет ли одинаковым чувство ксенофобии у антикоммуниста и расиста? Скорее всего – нет. Таким образом, механическое соединение этих конкретных пунктов с целью их соизмерения в лучшем случае будет лишь тщетным упражнением, а в худшем – станет источником ошибочных умозаключений. 1

Проблемы подобного рода преодолеть не всегда просто, и ввиду этого при шкалировании нужно действовать очень внимательно, заранее все просчитывая. Тем не менее возможность представления сложного отношения или поведения в виде отдельного числа или оценки, являющаяся неоспоримым преимуществом шкалирования, служит стимулом к использованию этой методики во множестве самых разнообразных случаев.

 

 

 

 

 

 

 

 

 

2. РОЛЬ ШКАЛ В ПРОЦЕССЕ АНАЛИЗА ДАННЫХ

 

Шкала измерительная представляет собой алгоритм присвоения объекту числа, отражающего наличие или степень выраженности у него некоторого свойства. Различают четыре основных типа измерительных щкалы: шкала наименований, шкала порядка, шкала интервалов и шкала отношений. Шкалы наименований и порядка позволяют отнести объект к одному из нескольких непересекающихся классов и называются «качественными». Шкалы интервалов и отношений измеряют «количество» или степень выраженности у объекта некоторого свойства и называются «количественными». Шкала наименований (номинальная шкала) позволяет отнести объект к одному из нескольких классов, между которыми не установлено отношение порядка, т.е. классов, по отношению к которым не применяются сравнения типа «больше — меньше», «лучше — хуже» и т.п. По номинальным шкалам измеряются такие социологические показатели как пол, национальность или раса, цвет глаз, темперамент и т.п. При разработке номинальной шкалы составляется полный список классов, который нумеруется в произвольном порядке. При этом числа, представляющие номера классов, играют роль символов или «меток», к ним не могут применяться никакие арифметические операции. Другими словами, на номинальной шкале определено только отношение тождества: объекты, отнесенные к одному классу, считаются тождественными, отнесенные к разным классам — не тождественными. Частным случаем номинальной шкалы является дихотомическая шкала, фиксирующая наличие или отсутствие у объекта некоторого свойства. Наличие качества принято обозначать числом «1», его отсутствие — числом «0». Шкала порядка предназначена для отнесения объекта к одному из непересекающихся классов, упорядоченных по некоторому критерию. На шкале порядка, кроме отношения тождества, определено отношение порядка («больше — меньше»). Таким образом, про объекты, отнесенные к разным классам, можно сказать, что у одного из них измеряемое свойство выражено сильнее, чем у другого, но при этом нельзя определить, насколько сильнее. Типичными примерами шкалы порядка являются образование, тип поселения, социальное положение, воинские звания и т.п. При построении шкалы порядка классы нумеруются в порядке возрастания или убывания соответствующего признака. Арифметические операции над номерами классов не производятся. Частным случаем шкалы порядка является ранговая шкала, применяемая в тех случаях, когда некоторый признак не может быть измерен, но объекты могут быть упорядочены по соответствующему критерию, либо когда порядок объектов более важен, чем точный результат измерения, — например, места, занятые на спортивных состязаниях. Ранговые шкалы используются также при изучении предпочтений, ценностных ориентаций, мотивов, установок и т.п. Респонденту в этом случае предлагается упорядочить предложенный список объектов, понятий или суждений по определенному критерию. Другим частным случаем шкалы порядка является оценочная шкала, с помощью которой свойства объекта или отношение респондента к чему-либо оценивается исходя из определенного количества баллов. Например, академическая успеваемость оценивается по 5-балльной шкале. Оценочные шкалы часто рассматриваются как исключение из шкал порядка, так как предполагается, что между баллами на шкале существует примерно одинаковое расстояние. Например, предполагается, что «отличник» знает предмет настолько же лучше, чем «хорошист», насколько «хорошист» знает его лучше по сравнению с «троечником». Это свойство позволяет во многих случаях рассматривать оценочные шкалы как квазиинтервальные и использовать их соответствующим образом, например, вычислять средний балл по аттестату зрелости или определять среднюю успеваемость в классе. Шкалы интервалов и отношений являются Ш.И. в прямом смысле этого слова. Для них характерно наличие единицы измерения, позволяющей определить, насколько один объект больше или меньше, чем другой, по изучаемому критерию. Отличие между этими двумя типами шкал состоит в том, что шкала отношений обладает «объективным» нулем, не зависящим от произвола наблюдателя, который, как правило, соответствует полному отсутствию измеряемого качества у объекта. На шкале интервалов нуль устанавливается произвольно либо в соответствии с некоторыми традициями и договоренностью. Так, возраст измеряется по шкале отношений, а летоисчисление — по шкале интервалов, хотя в обеих шкалах используется одинаковая единица измерения — год. На шкале интервалов, кроме отношений тождества и порядка, определено отношение разности: для любой пары объектов можно определить, на сколько (единиц измерения) один объект больше или меньше другого. Шкалы интервалов широко используются в психологических тестах и психометрии, методиках семантического дифференциала, других методах вторичных измерений. По шкалам отношений измеряются такие показатели, как рост, возраст, доходы, стаж работы, количество выкуриваемых сигарет и т.п. Для таких переменных определены не только отношения тождества, порядка и разности, но и отношение отношений, позволяющее определять, во сколько раз один объект больше или меньше другого.

Измерение — отображение эмпирической системы в числовую систему, сохраняющую порядок отношений между объектами. Классическая концепция измерения различает два способа приписывания объектам значений переменных. Первый способ называется оцениванием. Отображение свойства объекта на шкалу осуществляется здесь в условных единицах. Например, можно с той или иной степенью точности определить место человека на шкале «консерватизма». Никакой единицы консерватизма в распоряжении исследователя не имеется, градации могут меняться произвольно.

Собственно измерение требует определения единицы — эталона шкалы. В этом случае измерению поддаются лишь пространственные и временные признаки, а также численность — аддитивные величины. Однако в социальных и поведенческих науках получил признание более широкий взгляд на измерение как на приписывание объектам значений в соответствии с заданной системой отношений на различных уровнях.

Переменная — не то же самое, что реальные признак или свойство. Это своего рода линейка — совокупность норм и операций, которые необходимы и достаточны для квалификации события, свойства, отношения, словом, всего того, что принято понимать под фактами. Для линейки не очень важно, нанесены ли ее деления на деревянную, пластмассовую либо металлическую пластинку. Гораздо важнее градуировка шкалы, а также умение пользователя правильно производить замеры. Аналогичным образом обстоит дело и при измерении поведения, только «линейка» в данном случае имеет вид вопросника (или бланка наблюдения), а «прикладывание» их к объекту есть не что иное, как операциональное определение.

Как измерительный инструмент переменная конструируется исследователем путем установления континуума значений (градаций). Minimum minimorum континуума, как мы уже знаем, — дихотомия: «да» и «нет», плюс и минус, утверждение и отрицание. Фактически же мы почти всегда имеем дело с трихотомиями, поскольку в составе любой переменной положена градация «нет ответа» (или «нет данных»).

Таким образом, переменная содержит три компонента: 1) некоторую не всегда отчетливо сформулированную концепцию измеряемого признака, например, «электоральные предпочтения», «стабильность семьи», «образование» и т. п.; 2) шкалу — совокупность значений, задающих критерии классификации объектов; 3) операциональное определение — совокупность инструкций, регламентирующих процесс идентификации объекта по установленной шкале значений.

Элементарный уровень измерения — номинальный. Этому уровню соответствует шкала наименований, которая состоит из значений признаков, не упорядоченных по степени возрастания или убывания. Типичные примеры шкалы наименований: национальность, профессия, политические убеждения. Значения шкалы наименований конструируются в соответствии с логическими правилами классификации. Первое из них — правило непротиворечия. Оно гласит: «Объект может быть отнесен к одному и только одному классу, предусмотренному значением переменной». Иными словами, исследователь обязан называть вещи своими именами и избегать диалектики, при которой объект одновременно оказывается и тем, и другим. Сделать это не так легко, как кажется, — назвать вещь своим именем. Реакционеры иногда кажутся либералами, глупые — умными, женщины — мужчинами. Но даже в самых затруднительных ситуациях аналитик обязан дать однозначную квалификацию объекту. Здесь многое позволено. Единственное, что запрещено, — это квалифицировать объект как белый и черный одновременно.

Следствием данного правила является стопроцентная сумма частот всех градаций переменной. Если сумма частот превышает стопроцентную отметку, значит, по крайней мере некоторые единицы попали одновременно в два класса и посчитаны неоднократно. Так бывает, когда в вопроснике задают шкалу-ассорти, где можно выбрать и то, и другое, и третье. Например, спрашивается: «Что вы больше всего любите?» с вариантами ответов: мацу, шашлык, либерально-демократические свободы… Здесь можно предпочесть все подсказки вопросника, и стопроцентной суммы не получится, если хотя бы один из респондентов попал в классы любящих одновременно мацу и либерально-демократические свободы. Причина искажения в том, что приведенные позиции не составляют переменную, напротив, каждая из них — являет собой «обрезанную» версию переменной. Полноценная версия предполагает ответы «Да», «Нет» и «Не могу сказать». Правильно построенная переменная представляет собой одномерный континуум. В отличие от многосоставных измерений он не требует агрегации. Отсюда второе правило — правило единого основания классификации. Нельзя разделять людей на умных и рыжих, потому что и рыжие иногда оказываются умными. Нельзя смешивать две разные переменные в одном вопросе. Нельзя не учитывать и изменение смысла переменной при ее перемещении в иной контекст. Например, вопрос об отношении к интеллигентам, заданный в Москве и Чикаго, окажется двумя разными вопросами, потому что в русской традиции принято приписывать интеллигенту роль носителя нравственного начала, тогда как житель Чикаго не сразу догадается, кто имеется в виду под «интеллигентом».

Третье правило — правило полноты. В изучаемой совокупности не должно быть ни одного объекта, не поддающегося идентификации по заданным значениям. Иными словами, объект должен быть распределен на континууме переменной и получить полагающееся ему место в одном из классов. Если же этого не происходит, процесс измерения «зависает» — линейку приложить просто не к чему и не к кому. Заметим, что позиция «Нет данных» решает проблему полноты, когда шкала не охватывает весь диапазон значений. Например, отказ респондента сообщить свой возраст не означает, что шкала возраста не имеет отношения к данному объекту. Примеры шкал, которые не имеют отношения к объекту, иначе говоря, не релевантны ему, многочисленны. Социологи часто пытаются осуществить замеры мнений, установок, других личностных характеристик, предполагая, что изучаемое свойство имеется у всех. Например, вопрос: «Как вы относитесь к Бурбулису?», задававшийся некоторыми центрами изучения общественного мнения в 1992 г., основывался на убеждении, что свойство «Отношение к Бурбулису» имеется у всех, кто попал в выборку. Исключалась сама возможность того, что у человека нет ни положительного, ни отрицательного отношения к Бурбулису. Позиция «Не могу сказать», казалось бы, включает в себя такого рода респондентов, однако сюда попадают не только не имеющие мнения, но и не имеющие самого признака.

В социологических измерениях нередко возникает разновидность искусственно созданных эмерджентных переменных — переменных, порожденных самой процедурой. Люди, не имевшие до момента интервьюирования никакого отношения к изучаемому признаку, конструируют это отношение в процессе межличностной коммуникации с интервьюером, отвечая «положительно», «отрицательно» или чаще всего «нейтрально». Причины эмерджентных переменных связаны больше всего с влиянием интервьюера.

Г. А. Погосян показывает о типичных обстоятельствах, при которых переменные описывают не столько самостоятельное речевое поведение респондента, сколько ситуацию сбора данных. В частности, Погосян показал, что подсказка ответа существенно изменяет частотное распределение.

Из таблицы видно, что «подсказка» существенно увеличивает количество считающих, что хорошие специалисты имеют наиболее благоприятные шансы на продвижение по службе, и почти настолько же снижает количество указавших на угодливость. Если предположить, что открытые вопросы дают большую возможность для выражения самостоятельного мнения, подсказка приводит к артефакту: 62% выбрали соответствующую версию ответа, а не выразили свое мнение.

Проектируя переменные, социолог стремится обеспечить их соответствие фактическому поведению объекта. В то же время он обязан организовать их в логическом отношении, пренебрегая тем обстоятельством, что «жизнь» часто бывает нелогичной и многозначной. Здесь намечается дилемма: либо описывать жизнь во всей противоречивости, либо конструировать схемы. В первом случае социологу лучше избрать для себя карьеру писателя, во втором случае необходимо постараться, чтобы логическая схема соответствовала действительности.

Требования взаимооднозначного соответствия и единого основания содержат в себе определенное насилие над «человеческой» реальностью. В жизни «да» часто переходит в «нет», «демократы» называют себя коммунистами, а плюс оказывается минусом. Лучше всего работать с номиналиями, которые, как предполагается, в наибольшей степени соответствуют языку социального взаимодействия и поведения. Номинальные измерения в социологических и социально-экономических исследованиях расцениваются как фундаментальные для понимания самой природы социальной реальности. С.В. Чесноков основывает такой вывод на предположении, что номинальные переменные являются конечным итогом процедур эмпирической верификации теоретических понятий всегда, когда объектом исследований в той или иной мере являются люди, их сознание и поведение. «Это обусловлено тем, — пишет С.В. Чесноков, — что и социолог-исследователь, и люди, выразившие добрую волю контактировать с социологом в роли респондентов, выражают свои реакции, формируют и описывают социальное в образах и понятиях, знаками которых являются слова, а не числа»8. Отсюда следует предположение об ограниченных возможностях числового анализа данных. Гуманитарным измерением С.В. Чесноков называет любое именование, а детерминационным анализом — установление следования «если а, то b», где а и b — имена.

Вне сомнения номинальные переменные, фиксирующие конкретные значения, лежат в фундаменте социологического словаря. Однако эта их особенность коренится не столько в «живом языке» социального общения, сколько в эквивалентности значений переменных протокольным фактофиксирующим высказываниям. Такого рода номинальные «протоколы» вне зависимости от их содержания лежат в фундаменте любых научных описаний. Собственно шкалы (континуумы) представляют собой способы организации номинальных значений в идеализированных метриках, но в любом случае должно соблюдаться требование взаимооднозначного соответствия единицы и значения переменной.

Требования, предъявляемые к номинальным измерениям (идентификациям), должны выполняться и для шкал более высокого уровня: упорядоченных, интервальных и метрических.

Упорядоченная шкала отличается от номинальной тем, что ее градации располагаются в определенном порядке относительно возрастания либо убывания интенсивности свойства.

К классу упорядоченных относятся оценочные шкалы, установки и предпочтения. В социологии используются два вида упорядоченных шкал: ранги (рейтинги) и баллы. Ранги устанавливаются путем приписывания объекту места таким образом, что количество мест в точности равно количеству объектов. Например, можно распределить студентов по уровню подготовки и приписать каждому его место, начиная от первого и кончая последним. Иначе говоря, мы ранжируем их, зная, что вне зависимости от уровня знаний в группе должны быть первые и последние. Аналогичную систему производственного стимулирования, основанную на идее поощрения первых за счет последних, применил в 1960-е гг. В.М. Якушев, экспериментируя в одном из конструкторских бюро, — эксперимент получил известность под названием «Пульсар». Поскольку в любом случае кто-то окажется последним, группа ставится в условия конкуренции и борьбы за выживание.

Рейтинг как тип социального оценивания является нормой определенного типа культуры, основанной на приоритете индивидуального интереса перед интересами коллективными. Жизненный и профессиональный успех осмысливается здесь как победа над другими. В такого рода игре считается глупым и даже аморальным дать товарищу по классу списать контрольную работу — ведь это означает уступить ему в соревновании. В конечном счете загнанных лошадей пристреливают, не так ли? Все это происходит не только в учебе, но и в бизнесе, семье, общении, религии. Теория рационального выбора основана как раз на идее оптимизации индивидуального поведения при ограниченных ресурсах.

Балльные шкалы оперируют не местами, а школьными значениями. Эти значения не зависят друг от друга. В некотором смысле балльная шкала имеет эгалитарное происхождение. Все студенты, включая первого и последнего, могут получить тройки и быть счастливы в соответствии с теорией относительной депривации. Однако надежность такого рода шкал очень сомнительна, особенно в случаях, когда для означивания меток используются цифры. Расстояние от 4 до 5 — не то же самое, что расстояние от 2 до 3. У каждого преподавателя есть собственные предпочтения относительно участка континуума, на котором он распределяет студентов. Один ставит 2 и 3, другой 4 и 5. Как сравнивать их? Больших затруднений здесь не возникает, поскольку индивидуальные значения можно нормировать относительно среднего балла либо стандартного отклонения баллов у каждого преподавателя.

Упорядоченные шкалы оценивания предполагают логическое балансирование позиций относительно нейтрального центра. Это требование отражает более общее правило построения шкал: каждая категория шкалы должна характеризоваться равной вероятностью «попадания» объекта при условии случайного распределения. Иными словами, количество градаций справа от центра должно быть равно количеству градаций слева, Часто в качестве «центра» шкалы используется значение «Не могу сказать». Так создается очевидная двусмысленность в интерпретации данных. «Не могу сказать» означает, что респондент не может выбрать ни одну из предложенных позиций; но если «Не могу сказать» стоит в центре сбалансированной шкалы, имеется в виду «Затрудняюсь предпочесть что-либо».

Когда значения упорядоченной шкалы оценивания не имеют четко определенных границ, шкала превращается в полуупорядоченную. Фактически в социологических и психологических исследованиях чаще всего используются полуупорядоченные шкалы.

Интервальные шкалы основаны на процедурах, обеспечивающих равные или примерно равные расстояния между градациями переменной. В данном случае сравниваются не значения переменных, а расстояния между значениями. Иными словами, любые два измерения данной эмпирической системы, осуществленные по шкале интервалов, переводятся друг в друга с помощью линейной функции.

Если по номинальной шкале последовательность объектов устанавливается без особых затруднений, интервальная шкала предполагает решение проблемы сравнения расстояний между объектами. Это свойство линейных преобразований, характерное для интервальных шкал, демонстрируется числовым примером: 5 — 2 / 2 — 1 = 24 — 15 / 15 — 12 = 3. Отношение разностей между шкальными значениями является в данном случае постоянным». Если один из объектов интервальной шкалы отображается в ноль, можно говорить о шкале отношений — частном случае интервальной шкалы. В данном случае фиксируется начало отсчета12.

Построить интервальную шкалу можно с помощью парных сравнений либо используя, как это делал Л. Терстоун, судейские процедуры. Сначала создается массив релевантных суждений, описывающих измеряемый признак, например отношение, установку либо оценку. Затем экспертам предлагается расположить суждения по категориям от наибольшей интенсивности признака до наименьшей. Предполагается, что распределение судейских оценок вокруг шкальных значений подчинено нормальному закону. Отбираются те суждения, которые получил и согласованные оценки судей. Таков метод построения «интервалов, кажущихся равными». Наиболее известные методы построения шкал интервалов разработаны Л. Терстоуном, Р. Ликертом, Л. Гуттманом. Однако в современной социологии они используются редко.

Метрические, или абсолютные, шкалы соответствуют всем требованиям, предъявляемым к шкалам более низких классов, они имеют не только нулевую метку отсчета, но и единицу измерения времени, расстояния либо численности единиц. Здесь допустимы все преобразования с числами.

Приписывание значений объектам осуществляется в трех формах: вербальной, графической и числовой. Вербальная интерпретация переменных наиболее распространена в массовых опросах. В качестве элементов шкалы здесь выступают суждения, свидетельствующие о мнениях, ценностях, состояниях. Насколько адекватно это свидетельство — особая проблема. Ясно одно: сами суждения не более чем свидетельство о реальности, которая стоит за ними. Поэтому вербальная интерпретация шкалы выполняет в языке повседневности роль своеобразного зонда. Ее принципиальное отличие от обыденной речи заключается в четкой концептуальной структуре, адаптированной к многообразным речевым ситуациям и контекстам. Даже открытый вопрос, казалось бы, максимально ориентированный на лексику респондента, работает только при условии однозначного концептуального кодирования.

Вербально интерпретированные позиции шкалы воспринимаются достаточно отчетливо, если их немного. Но уже при выборе из пяти градаций начинаются затруднения. Например, категории «доволен» и «скорее доволен, чем недоволен» различаются со значительной степенью условности. В семипунктовой шкале возможности вербальной интерпретации оказываются исчерпанными. Здесь предпочтительнее графическое оформление шкалы, создающее возможность стандартного прочтения. Графическая интерпретация шкалы применяется в так называемых кросс-культурных исследованиях, где лексика инструмента требует перевода на язык респондента. Предполагается, что визуализация переменной в рисунке создает универсальный «паттерн» шкалы. Аналогичным образом используются жесты в межнациональном общении. Один из примеров инструмента, выполненного в графическом ключе, — картинки теста тематической апперцепции. Часто шкалы изображаются в виде линеек и пиктограмм. Хэрви Кэнтрил разработал «лестницу счастья»: на рисунке лестницы респондент должен отмечать свое нынешнее положение относительно наилучшего (верх лестницы) и наихудшего (низ лестницы) стечения обстоятельств, а затем указывать направление своего предполагаемого движения по «лестнице счастья». В одной из ранних версий шкалы установки Л. Терстоуном предлагался одиннадцатипунктовый континуум, выполненный в виде термометра.

Числовая интерпретация иногда ошибочно отождествляется с вербальной. Использование цифр в качестве имен числительных не означает введения метрики. Например, в целях кодирования мужчин можно обозначить цифрой 1, а женщин — цифрой 2. В данном случае применены метки, но не числа. Числа предполагают осуществление операций аддитивности, арифметических действий. Круг числовых шкал ограничен интервальным и метрическим уровнями измерения, где установлены единицы интенсивности свойства.

 

 

 

 

 


 

<

Комментирование закрыто.

MAXCACHE: 0.96MB/0.00111 sec

WordPress: 21.48MB | MySQL:112 | 1,311sec