ПОНЯТИЕ О КАНЦЕРОГЕННЫХ ВЕЩЕСТВАХ. КАНЦЕРОГЕННЫЕ ВЕЩЕСТВА В ОКРУЖАЮЩЕЙ СРЕДЕ

<

 

061614 0222 1 ПОНЯТИЕ О КАНЦЕРОГЕННЫХ ВЕЩЕСТВАХ. КАНЦЕРОГЕННЫЕ ВЕЩЕСТВА В ОКРУЖАЮЩЕЙ СРЕДЕКанцерогенные вещества – химические соединения, способные при воздействии на организм человека вызывать рак и др. заболевания (злокачественные опухоли), а также доброкачественные новообразования.

В настоящее время под канцерогенными подразумеваются химические, физические и биологические агенты природного и антропогенного происхождения, которые способны при определенных условиях индуцировать рак у животных и человека. Наиболее широко распространены канцерогенные вещества химической природы, действующие в виде однородных соединений или в составе более или менее сложных химических продуктов. По своему происхождению, химической структуре, длительности периода воздействия на человека и распространенности они очень разнообразны. Соединения, относящиеся категории «природных» канцерогенов, хотя и многочисленны, но имеют ограниченное распространение (например, эндемические районы с высоким содержанием мышьяка в почве и воде) и, в основном, относительно низкие уровни содержания в окружающей среде.

Общую онкогенную «нагрузку» на живые организмы определяет фоновый уровень канцерогенов. Фоновое содержание канцерогенов слагается из естественного (природного) их содержания, связанного с жизнедеятельностью организмов, абиогенных и антропогенных загрязнений. Фон — понятие региональное, его колебания, в первую очередь, зависят от близости к источникам загрязнения среды, связанным с хозяйственной деятельностью человека. Оценить все формирующие фон слагающие вряд ли возможно.

Канцерогенность — свойства некоторых химических, физических и биологических факторов самостоятельно или в комплексе с др. факторами вызывать или содействовать развитию злокачественных новообразований. Подобные факторы называются канцерогенными, а процесс возникновения опухолей в результате их воздействия — канцерогенезом. Различаются канцерогенные факторы прямого действия, которые при определенном дозо-экспозиционном воздействии вызывают развитие злокачественных новообразований, и так называемые модифицирующие факторы, которые не обладают собственной канцерогенной активностью, но способны усиливать или ослаблять канцерогенез. Количество модифицирующих факторов существенно превышает число прямых канцерогенных агентов, их воздействие на организм человека может различаться по величине и направленности.

Канцерогенные факторы, воздействие которых связано с профессиональной деятельностью, называются производственными канцерогенами или канцерогенными производственными факторами (КПФ). Впервые роль производственных канцерогенов была описана англ. исследователем П. Поттом (Pott; 1714—1788) в 1775 г. на примере развития рака половых органов среди лондонских трубочистов в результате воздействия на кожу сажи и высоких температур в процессе работы. В 1890 г. в Германии были зарегистрированы онкологические заболевания мочевого пузыря среди работников красильной фабрики. В дальнейшем было изучено и определено канцерогенное воздействие нескольких десятков химических, физических и биологических производственных факторов на организм работника. Выявление КПФ основано на проведении эпидемиологических, клинических, экспериментальных и иных исследований.

Международным агентством по изучению рака (МАИР) разработан ряд критериев по степени доказательности уровня канцерогенности различных факторов или агентов, что позволило разделить все канцерогены, включая производственные, на классификационные группы.

Агент, комплекс агентов или факторы внешнего воздействия:

группа 1    являются канцерогенными для людей;

группа 2а    являются вероятно канцерогенными для людей;

группа 2    являются возможно канцерогенными для людей;

группа 3    не классифицируются как канцерогенные для людей;

группа 4    являются вероятно не канцерогенными для людей.

В настоящее время в качестве химических профессиональных канцерогенов в соответствии с указанной классификацией установлены 22 химических вещества (не включая пестициды и некоторые лекарственные средства, обладающие канцерогенными свойствами) и ряд производств, их применяющих, которые входят в 1-ю классификационную группу. К ним относятся 4-аминобифенил, асбест, бензол, бензидин, бериллий, дихлорметиловый эфир, кадмий, хром, никель и их компоненты, угольная смола, этиленоксид, минеральные масла, древесная пыль и др. Эти вещества применяют в резиновом и деревообрабатывающем производстве, а также в производстве стекла, металлов, пестицидов, изоляционных и фильтрующих материалов, текстиля, растворителей, топлива, красок, лабораторных реактивов, строительных и смазочных материалов и др.

К группе вероятно канцерогенных для человека (2а) относятся 20 производственных химических агентов, в т. ч. акрилнитрил, красители на основе бензидина, 1,3-бутадиен, креозот, диэтил- и диметилсульфат, формальдегид, кристаллический кремний, стиреноксид, три- и тетрахлорэтилен, винилбромид и винилхлорид, а также связанные с их использованием производства. К группе возможно канцерогенных производственных химических агентов (2б), канцерогенность которых доказана в основном путем экспериментальных исследований на животных, относится большое число веществ, включающих ацетальдегид, дихлорметан, неорганические соединения свинца, хлороформ, четыреххлористый углерод, керамические волокна и др.

К физическим КПФ относятся радиоактивное, ультрафиолетовое, электрическое и магнитное излучение; к биологическим КПФ — некоторые вирусы (напр., вирусы гепатитов А и С), возбудители инфекционных заболеваний желудочно-кишечного тракта, микотоксины, особенно афлотоксины.

Между воздействием КПФ и проявлениями онкологического заболевания может пройти 5—10 лет или даже 20—30 лет, в течение которых не исключается воздействие иных канцерогенных факторов, включая экологические, генетические, конституциональные и др. По данным ряда исследователей, доля онкологических заболеваний, на развитие которых основное влияние оказали производственные канцерогены, в общей структуре онкологической заболеваемости колеблется от 4% до 40%. Общепринятым уровнем профессионально обусловленной онкологической заболеваемости в развитых странах считается 2—8% от всех зарегистрированных онкологических заболеваний.

При условиях работы, включающих воздействие любых КПФ групп 1, 2а и 2б, необходимо проведение профилактики онкологических заболеваний среди работников по нескольким направлениям: снижение воздействия КПФ путем модернизации производства, разработки и реализации дополнительных коллективных и индивидуальных мер защиты; введение системы ограничений допуска к работе с КПФ, сроков работы на данном производстве; проведение постоянного мониторинга состояния здоровья работников канцерогенно опасных работ и производств; принятие мер по оздоровлению работников и своевременное освобождение их от работ с КПФ.

Происходящий в настоящее время рост заболеваемости злокачественными новообразованиями многие исследователи связывают с повышением уровня загрязнения внешней среды различными химическими и физическими агентам, обладающими канцерогенными свойствами. Принято считать, что до 90% всех случаев рака обусловлено воздействием канцерогенов окружающей среды. Из них 70-80% связывают с воздействием химических и 10% радиационных факторов. Загрязнение окружающей среды канцерогенными веществами носит глобальный характер. Канцерогены обнаруживают не только вблизи мест выбросов, но и далеко за их пределами. Повсеместное присутствие канцерогенов вызывает сомнение в практической возможности изоляции человека от них.

С ростом индустриализации наблюдается значительное увеличение загрязнения окружающей среды такими канцерогенами, как полициклические ароматические углеводороды (ПАУ), которые образуются в результате повсеместного распространения процессов сжигания и пиролитической переработки топлива и становятся постоянными компонентами атмосферного воздуха, воды и почвы. Эта группа весьма многочисленна. Наиболее известными представителями ее является бенз(а)пирен, 7-12 диметилбенз(а)-антрацен, дибенз(а,Н)антрацен; 3,4-бензфлуоретан, обладающие высокой канцерогенной активностью. Бенз(а)пирен (БП) — одно из самых активных и распространенных в окружающей среде соединений, что дало основание рассматривать его в качестве индикатора группы ПАУ. Возрос и уровень содержания в окружающей среде канцерогенных веществ неорганической природы в связи с широким развитием горнодобывающей промышленности и цветной металлургии, использованием некоторых из них, например, мышьяка, в качестве пестицидов и т.д.

Таким образом, опасность для здоровья населения от воздействия канцерогенных нитрозосоединений может возникнуть также, как и при других химических канцерогенах, вследствие загрязнения окружающей среды. Однако до сего времени не ясно, могут ли обнаруженные в окружающей среде количества НС вызывать у человека злокачественные новообразования. Высказывается предположение, что канцерогенный эффект может проявляться после многолетнего воздействия малых доз, если одновременно оказывали влияние другие сопутствующие факторы (проматоры).

Канцерогенные вещества могут осуществлять свое влияние непосредственно на органы и ткани (первично) или путем образования в организме продуктов их превращения (вторично). Несмотря на разнообразие опухолевых реакций, которые могут вызываться канцерогенами у экспериментальных животных и человека (в условиях профессиональной вредности) можно отметить общие особенности, характерные для их действия.

Во-первых, при воздействии канцерогенных веществ развитие опухоли наблюдается не сразу, а спустя более или менее длительный период после начала действия агента и, следовательно, относится к категории отдаленных эффектов. Продолжительность латентного периода зависит от вида животных и пропорционально общей продолжительности жизни. Например, при применении активных канцерогенов латентный период у грызунов (мышей, крыс) может составлять несколько месяцев, у собак — несколько лет, обезьян — 5-10 лет. Он не является величиной постоянной для одного вида животных: увеличение активности канцерогена ведет к его сокращению, а уменьшение дозы — к удлинению. Рак может развиваться также спустя длительное время после прекращения действия канцерогена, например, в условиях профессиональной вредности через 20-40 лет после контакта с ним.

Другая особенность действия канцерогенов связана с частотой проявления эффекта. Опыт экспериментальной онкологии показывает, что лишь не многие высокоактивные канцерогенные соединения могут индуцировать новообразования почти у 100% животных. Но даже при таких условиях находятся индивидуумы, нечувствительные к их действию. У человека высока степень поражения может наблюдаться в случаях продолжительного непрерывного контакта с такими сильными профессиональными канцерогенами, как каменноугольный пек, ароматические амины. В большинстве случаев, опухолевая реакция проявляется не у всех, а лишь у некоторых представителей подвергаемой воздействию популяции и носит в известной степени вероятностный характер.

Среди множества химических соединений, загрязняющих окружающую среду, выделено несколько сот веществ, проявивших в эксперименте на животных канцерогенные свойства. Существует, примерно, два десятка химических соединений, канцерогенность которых доказана для человека.

В связи с тем, что одним из главных источников образования канцерогенных веществ является производственная сфера, значительное количество исследований посвящено изучению заболеваемости раком в определенных отраслях промышленности и среди различных профессиональных групп.

К настоящему времени накопилась обширная информация о канцерогенности для человека ряда агентов производственной среды, о степени риска развития рака, обусловленного контактом с ними, а также о приблизительной величине скрытого периода такого развития. В производственных условиях человек контактирует с самыми разнообразными канцерогенными веществами. Среди профессиональных канцерогенов выделяют агенты органической (ароматические углеводороды, алкилирующие агенты и др.) и неорганической (металлы, волокна) природы, а также физические факторы (ионизирующая радиация).

2. СОСТОЯНИЕ АТМОСФЕРЫ И ТРАНСПОРТ

 

Среди всех видов транспорта автомобильный наносит наибольший ущерб окружающей среде. В России в местах повышенного загрязнения воздуха проживает около 64 млн. человек, среднегодовые концентрации загрязнителей воздуха превышают предельно допустимые более чем в 600 городах России.

Угарный газ и окислы азота, столь интенсивно выделяемые на первый взгляд невинным голубоватым дымком глушителя автомобиля – вот одна из основных причин головных болей, усталости, немотивированного раздражения, низкой трудоспособности. Сернистый газ способен воздействовать на генетический аппарат, способствуя бесплодию и врожденным уродствам, а все вместе эти факторы ведут к стрессам, нервным проявлениям, стремлению к уединению, безразличию к самым близким людям. В больших городах также более широко распространены заболевания органов кровообращения и дыхания, инфаркты, гипертония и новообразования. По расчетам специалистов, «вклад» автомобильного транспорта в атмосферу составляет до 90% по окиси углерода и 70% по окиси азота. Автомобиль также добавляет в почву и воздух тяжелые металлы и другие вредные вещества.

Основными источниками загрязнения воздушной среды автомобилей являются отработавшие газы ДВС, картерные газы, топливные испарения.

Двигатель внутреннего сгорания – это тепловой двигатель, в котором химическая энергия топлива преобразуется в механическую работу. По виду применяемого топлива ДВС подразделяют на двигатели, работающие на бензине, газе и дизельном топливе. По способу воспламенения горючие смеси ДВС бывают с воспламенением от сжатия (дизели) и с воспламенением от искровой свечи зажигания.

Дизельное топливо представляет собой смесь углеводородов нефти с температурами кипения от 200 до 3500С. Дизельное топливо должно иметь определенную вязкость и самовоспламеняемость, быть химически стабильным, при сгорании иметь минимальную дымность и токсичность. Для улучшения этих свойств в топлива вводят присадки, антидымные или многофункциональные.

<

Образование токсичных веществ – продуктов неполного сгорания и окислов азота в цилиндре двигателя в процессе сгорания происходит принципиально различными путями. Первая группа токсичных веществ связана с химическими реакциями окисления топлива, протекающими как в предпламенный период, так и в процессе сгорания – расширения. Вторая группа токсичных веществ образуется при соединении азота и избыточного кислорода в продуктах сгорания. Реакция образования окислов азота носит термический характер и не связана непосредственно с реакциями окисления топлива. Поэтому рассмотрение механизма образования данных токсичных веществ целесообразно вести раздельно.

К основным токсичным выбросам автомобиля относятся: отработавшие газы (ОГ), картерные газы и топливные испарения. Отработавшие газы, выбрасываемые двигателем, содержат окись углерода (СО), углеводороды (СХHY), окислы азота (NOX), бенз(а)пирен, альдегиды и сажу. Картерные газы – это смесь части отработавших газов, проникшей через неплотности поршневых колец в картер двигателя, с парами моторного масла. Топливные испарения поступают в окружающую среду из системы питания двигателя: стыков, шлангов и т.д. Распределение основных компонентов выбросов у карбюраторного двигателя следующее: отработавшие газы содержат 95% СО, 55% СХHY и 98% NOX, картерные газы по – 5% СХHY, 2% NOX, а топливные испарения – до 40% СХHY.

Содержание токсичных выбросов в отработавших газах двигателей внутреннего сгорания представлена в табл.1.

В общем случае в составе отработавших газов двигателей могут содержаться следующие нетоксичные и токсичные компоненты: О, О2, О3, С, СО, СО2, СН4, CnHm, CnHmО, NO, NO2, N, N2, NH3, HNO3, HCN, H, H2, OH, H2O.

Основными токсичными веществами – продуктами неполного сгорания являются сажа, окись углерода, углеводороды, альдегиды.

Таблица 1 – Содержание токсичных выбросов в отработавших газах двигателей

 

Компоненты 

Доля токсичного компонента в ОГ ДВС 

Карбюраторные 

Дизельные 

В % 

на 1000л топлива, кг 

в % 

на 1000л топлива, кг 

CO

0,5-12,0 

до 200 

0,01-0,5 

до 25 

NOX

до 0,8 

20 

до 0,5 

36 

СХHY

0,2 – 3,0 

25 

0,009-0,5

8 

Бенз(а)пирен 

 

до 10 мкг/м3

 

 

Альдегиды 

до 0,2мг/л 

 

0,001-0,09мг/л 

 

Сажа 

до 0,04 г/м3

1 

0,01-1,1г/м3

3 

 

Вредные токсичные выбросы можно разделить на регламентированные и нерегламентированные. Они действуют на организм человека по-разному. Вредные токсичные выбросы: СО, NOX, CXHY, RXCHO, SO2, сажа, дым.

СО (оксид углерода) – этот газ без цвета и запаха, более легкий, чем воздух. Образуется на поверхности поршня и на стенке цилиндра, в котором активация не происходит вследствие интенсивного теплоотвода стенки, плохого распыления топлива и диссоциации СО2 на СО и О2 при высоких температурах.

Во время работы дизеля концентрация СО незначительна ( 0,1…0,2%). У карбюраторных двигателей при работе на холостом ходу и малых нагрузках содержание СО достигает 5…8% из-за работы на обогащенных смесях. Это достигается для того, чтобы при плохих условиях смесеобразование обеспечить требуемое для воспламенения и сгорания число испарившихся молекул.

NOX (оксиды азота) – самый токсичный газ из ОГ.

N – инертный газ при нормальных условиях. Активно реагирует с кислородом при высоких температурах.

Выброс с ОГ зависит от температуры среды. Чем больше нагрузка двигателя, тем выше температура в камере сгорания, и соответственно увеличивается выброс оксидов азота.

Кроме того, температура в зоне горения (камера сгорания) во многом зависит от состава смеси. Слишком обедненная или обогащенная смесь при горении выделяет меньшее количество теплоты, процесс сгорания замедляется и сопровождается большими потерями теплоты в стенке, т.е. в таких условиях выделяется меньшее количество NOx, а выбросы растут, когда состав смеси близок к стехиометрическому (1 кг топлива к 15 кг воздуха). Для дизельных двигателей состав NOx зависит от угла опережения впрыска топлива и периода задержки воспламенения топлива. С увеличением угла опережения впрыска топлива удлиняется период задержки воспламенения, улучшается однородность топливовоздушной смеси, большее количество топлива испаряется, и при сгорании резко (в 3 раза) увеличивается температура, т.е. увеличивается количество NOx.

Кроме того, с уменьшением угла опережения впрыска топлива можно существенно снизить выделение оксидов азота, но при этом значительно ухудшаются мощностные и экономические показатели.

Гидроводороды (СxНy) — этан, метан, бензол, ацетилен и др. токсичные элементы. ОГ содержат около 200 разных гидроводородов.

В дизельных двигателях СxНy образуются в камере сгорания из-за гетерогенной смеси, т.е. пламя гаснет в очень богатой смеси, где не хватает воздуха за счет неправильной турбулентности, низкой температуры, плохого распыления. ДВС выбрасывает большее количество СxНy, когда работает в режиме холостого хода, за счет плохой турбулентности и уменьшения скорости сгорания.

Дым — непрозрачный газ. Дым может быть белым, синим, черным. Цвет зависит от состояния ОГ.

Белый и синий дым — это смесь капли топлива с микроскопическим количеством пара; образуется из-за неполного сгорания и последующей конденсации.

Белый дым образуется, когда двигатель находится в холодном состоянии, а потом исчезает из-за нагрева. Отличие белого дыма от синего определяется размером капли: если диаметр капли больше длины волны синего цвета, то глаз воспринимает дым как белый.

К факторам, определяющим возникновение белого и синего дыма, а также его запах в ОГ, относятся температура двигателя, метод образования смеси, топливные характеристики (цвет капли зависит от температуры ее образования: при увеличении температуры топлива дым приобретает синий цвет, т.е. уменьшается размер капли).

Кроме того, бывает синий дым от масла.

Наличие дыма показывает, что температура недостаточна для полного сгорания топлива.

Черный дым состоит из сажи.

Дым отрицательно влияет на организм человека, животных и растительность.

Сажа — представляет собой бесформенное тело без кристаллической решетки; в ОГ дизельного двигателя сажа состоит из неопределенных частице с размерами 0,3… 100 мкм.

Причина образования сажи заключается в том, что энергетические условия в цилиндре дизельного двигателя оказываются достаточными, чтобы молекула топлива разрушилась полностью. Более легкие атомы водорода диффундируют в богатый кислородом слой, вступают с ним в реакцию и как бы изолируют углеводородные атомы от контакта с кислородом.

Образование сажи зависит от температуры, давления в камере сгорания, типа топлива, отношения топливо-воздух.

Содержание сажи в ОГ уменьшается с увеличением угла опережения впрыска топлива, а при уменьшении угла опережения впрыска топлива, выделение сажи заметно возрастает.

Количество сажи зависит от температуры в зоне сгорания.

Существуют другие факторы образования сажи — зоны обогащенной смеси и зоны контакта топлива с холодной стенкой, а также неправильная турбуленция смеси.

Скорость сжигания сажи зависит от размера частиц, например, сажа сжигается полностью при размере частиц меньше 0,01 мкм.

SO2 (оксид серы) — образуется во время работы двигателя из топлива, получаемого из сернистой нефти (особенно в дизелях); эти выбросы раздражают глаза, органы дыхания.

SO2,H2S — очень опасны для растительности.

Главным загрязнителем атмосферного воздуха свинцом в Российской Федерации в настоящее время является автотранспорт, использующий этилированный бензин: от 70 до 87 % общей эмиссии свинца по различным оценкам. РЬО (оксиды свинца) — возникают в ОГ карбюраторных двигателей, когда используется этилированный бензин, чтобы увеличить октановое число для уменьшения детонации (это очень быстрое, взрывное сгорание отдельных участков рабочей смеси в цилиндрах двигателя со скоростью распространения пламени до 3000 м/с, сопровождающееся значительным повышением давления газов). При сжигании одной тонны этилированного бензина в атмосферу выбрасывается приблизительно 0,5… 0,85 кг оксидов свинца. По предварительным данным, проблема загрязнения окружающей среды свинцом от выбросов автотранспорта становится значимой в городах с населением свыше 100 000 человек и для локальных участков вдоль автотрасс с интенсивным движением. Радикальный метод борьбы с загрязнением окружающей среды свинцом выбросами автомобильного транспорта — отказ от использования этилированных бензинов. По данным 1995г. 9 из 25 нефтеперерабатывающих заводов России перешли на выпуск неэтилированных бензинов. В 1997 году доля неэтилированного бензина в общем объеме производства составила 68%. Однако, из-за финансовых и организационных трудностей полный отказ от производства этилированных бензинов в стране задерживается.

Альдегиды (RxCHO) — образуются, когда топливо сжигается при низких температурах или смесь очень бедная, а также из-за окисления тонкого слоя масла в стенке цилиндра.

При сжигании топлива при высоких температурах эти альдегиды исчезают.

Загрязнение воздуха идет по трем каналам: 1)ОГ, выбрасываемые через выхлопную трубу (65%); 2)картерные газы (20%); 3)углеводороды в результате испарения топлива из бака, карбюратора и трубопроводов (15%).

Каждый автомобиль выбрасывает в атмосферу с отработавшими газами около 200 различных компонентов. Самая большая группа соединений — углеводороды. Эффект падения концентраций атмосферных загрязнений, то есть приближение к нормальному состоянию, связан не только с разбавлением выхлопных газов воздухом, но и со способностью самоочищения атмосферы. В основе самоочищения лежат различные физические, физико-химические и химические процессы. Выпадение тяжелых взвешенных частиц (седиментация) быстро освобождает атмосферу только от Грубых частиц. Процессы нейтрализации и связывания газов в атмосфере проходят гораздо медленнее. Значительную роль в этом играет зеленая растительность, поскольку между растениями идет интенсивный газообмен. Скорость газообмена между растительным миром в 25 — 30 раз превышает скорость газообмена между человеком и ОС в расчете на единицу массы активно функционирующих органов. Количество атмосферных осадков оказывает сильное влияние на процесс восстановления. Они растворяют газы, соли, адсорбируют и осаждают на земную поверхность пылевидные частицы.

Автомобильные выбросы распространяются и трансформируются в атмосфере по определенным закономерностям.

Так, твердые частицы размером более 0,1 мм оседают на подстилающих поверхностях в основном из-за действия гравитационных сил.

Частицы, размер которых менее 0,1 мм, a также газовые примеси в виде CO, СХНУ, NOX, SOX распространяются в атмосфере под воздействием процессов диффузии. Они вступают в процессы физико-химического взаимодействия между собой и с компонентами атмосферы, и их действие проявляется на локальных территориях в пределах определенных регионов.

В этом случае рассеивание примесей в атмосфере является неотъемлемой частью процесса загрязнения и зависит от многих факторов.

Степень загрязнения атмосферного воздуха выбросами объектов АТК зависит от возможности переноса рассматриваемых загрязняющих веществ на значительные расстояния, уровня их химической активности, метеорологических условий распространения.

Компоненты вредных выбросов с повышенной реакционной способностью, попадая в свободную атмосферу, взаимодействуют между собой и компонентами атмосферного воздуха. При этом различают физическое, химическое и фотохимическое взаимодействия.

Примеры физического реагирования: конденсация паров кислот во влажном воздухе с образованием аэрозоля, уменьшение размеров капель жидкости в результате испарения в сухом теплом воздухе. Жидкие и твердые частицы могут объединяться, адсорбировать или растворять газообразные вещества.

Реакции синтеза и распада, окисления и восстановления осуществляются между газообразными компонентами загрязняющих веществ и атмосферным воздухом. Некоторые процессы химических преобразований начинаются непосредственно с момента поступления выбросов в атмо-сферу, другие — при появлении для этого благоприятных условий — необходимых реагентов, солнечного излучения, других факторов.

При выполнении транспортной работы существенным является выброс соединений углерода в виде CO и СХНУ.

Моноксид углерода в атмосфере быстро диффундирует и обычно не создает высокой концентрации. Его интенсивно поглощают почвенные микроорганизмы; в атмосфере он может окисляться до СО2 при наличии примесей — сильных окислителей (О,Оз), перекисных соединений и свободных радикалов.

Углеводороды в атмосфере подвергаются различным превращениям (окислению, полимеризации), взаимодействуя с другими атмосферными загрязнениями, прежде всего под действием солнечной радиации. В результате этих реакций образуются перекиси, свободные радикалы, соединения с оксидами азота и серы.

В свободной атмосфере сернистый газ (SО2) через некоторое время окисляется до сернистого ангидрида (SОз) или вступает во взаимодействие с другими соединениями, в частности углеводородами. Окисление сернистого ангидрида в серный происходит в свободной атмосфере при фотохимических и каталитических реакциях. В обоих случаях конечным продуктом является аэрозоль или раствор серной кислоты в дождевой воде.

B сухом воздухе окисление сернистого газа происходит крайне медленно. В темноте окисления SO2 не наблюдается. При наличии в воздухе оксидов азота скорость окисления сернистого ангидрида увеличивается независимо от влажности воздуха.

Сероводород и сероуглерод при взаимодействии с другими загрязнителями подвергаются в свободной атмосфере медленному окислению до серного ангидрида. Сернистый ангидрид может адсорбироваться на поверхности твердых частиц из окислов металлов, гидрооксидов или карбонатов и окисляться до сульфата.

Соединения азота, поступающие в атмосферу от объектов АТК, представлены в основном NO и NO2. Выделяемый в атмосферу моноксид азота под воздействием солнечного света интенсивно окисляется атмосферным кислородом до диоксида азота. Кинетика дальнейших превращений диоксида азота определяется его способностью поглощать ультрафиолетовые лучи и диссоциировать на моноксид азота и атомарный кислород в процессах фотохимического смога.

Фотохимический смог — это комплексная смесь, образующаяся при воздействии солнечного света из двух основных компонентов выбросов автомобильных двигателей — NO и углеводородных соединений. Другие вещества (SO2), твердые частицы также могут участвовать в смоге, но не являются основными носителями высокого уровня окислительной активности, характерной для смога. Стабильные метеорологические условия благоприятствуют развитию смога:

– городские эмиссии удерживаются в атмосфере в результате инверсии;

– служащей своеобразной крышкой на сосуде с реактивами;

– увеличивая продолжительность контакта и реакции,

– препятствуя рассеиванию (новые эмиссии и реакции добавляются к первоначальным).

061614 0222 2 ПОНЯТИЕ О КАНЦЕРОГЕННЫХ ВЕЩЕСТВАХ. КАНЦЕРОГЕННЫЕ ВЕЩЕСТВА В ОКРУЖАЮЩЕЙ СРЕДЕ

Рис. 1. Образование фотохимического смога

 

Формирование смога и образование оксиданта обычно останавливается при прекращении солнечной радиации в темное время суток и дисперсии реагентов и продуктов реакции.

В Москве при обычных условиях концентрация тропосферного озона, который является предвестником образования фотохимического смога, достаточно низкая. Оценки показывают, что генерация озона из оксидов азота и углеводородных соединений вследствие переноса воздушных масс и повышение его концентрации, и следовательно, неблагоприятное воздействие происходит на расстоянии 300-500 км от Москвы (в районе Нижнего Новгорода).

Помимо метеорологических факторов самоочищения атмосферы некоторые компоненты вредных выбросов автомобильного транспорта участвуют в процессах взаимодействия с компонентами воздушной среды, результатом которых является возникновение новых вредных веществ (вторичные атмосферные загрязнители). Загрязнители вступают с компонентами атмосферного воздуха в физическое, химическое и фотохимическое взаимодействия.

Многообразие продуктов выхлопов автомобильных двигателей может быть классифицировано по группам, сходным по характеру воздействия на организмы или химической структуре и свойствам:

  1. нетоксичные вещества: азот, кислород, водород, водяной пар и углекислый газ, содержание которых в атмосфере в обычных условиях не достигает уровня, вредного для человека;

    2) моноксид углерода, наличие которого характерно для выхлопов бензиновых двигателей;

    3) оксиды азота (~ 98% NО,~ 2% NO2), которые по мере пребывания в атмосфере соединяются с кислородом;

    4) углеводороды (алкаин, алкены, алкадиены, цикланы, ароматические соединения);

    5) альдегиды;

    6) сажа;

    7) соединения свинца.

    8) серистый ангидрид.

    Чувствительность населения к действию загрязнения атмосферы зависит от большого числа факторов, в том числе от возраста, пола, общего состояния здоровья, питания, температуры и влажности и т.д. Лица пожилого возраста, дети, больные, курильщики, страдающие хроническим бронхитом, коронарной недостаточностью, астмой, являются более уязвимыми.

    Общая схема реакции организма на воздействие загрязнителей ОС по данным Всемирной организации здравоохранения (ВОЗ) имеет следующий вид (рисунок 2)

    061614 0222 3 ПОНЯТИЕ О КАНЦЕРОГЕННЫХ ВЕЩЕСТВАХ. КАНЦЕРОГЕННЫЕ ВЕЩЕСТВА В ОКРУЖАЮЩЕЙ СРЕДЕ061614 0222 4 ПОНЯТИЕ О КАНЦЕРОГЕННЫХ ВЕЩЕСТВАХ. КАНЦЕРОГЕННЫЕ ВЕЩЕСТВА В ОКРУЖАЮЩЕЙ СРЕДЕ

     

     

     

     

     

    Проблема состава атмосферного воздуха и его загрязнения от выбросов автотранспорта становится все более актуальной.

    Среди факторов прямого действия (все, кроме загрязнения окружающей среды) загрязнение воздуха занимает, безусловно, первое место, поскольку воздух – продукт непрерывного потребления организма.

    Дыхательная система человека имеет ряд механизмов, помогающих защитить организм от воздействия загрязнителей воздуха. Волоски в носу отфильтровывают крупные частицы. Липкая слизистая оболочка в верхней части дыхательного тракта захватывает мелкие частицы и растворяет некоторые газовые загрязнители. Механизм непроизвольного чихания и кашля удаляет загрязненные воздух и слизь при раздражении дыхательной системы.

    Тонкие частицы представляют наибольшую опасность для здоровья человека, так как способны пройти через естественную защитную оболочку в легкие. Вдыхание озона вызывает кашель, одышку, повреждает легочные ткани и ослабляет иммунную систему.

     

     

     

     

    3. ЗАДАНИЕ

     

    Экологические факторы, оказывающие наибольшее влияние на численность современных пресмыкающихся:

    а) абиотические;

    б) биотические;

    в) антропогенные.

     

    Ответ– в) антропогенные.

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

        
     

     

     

     

    СПИСОК ЛИТЕРАТУРЫ

     

  2. Акимова Т.А., Хаскин В.В. Экология. Учебное пособие. –М.: ДОНИТИ, 2005.
  3. Горелов А.А. Экология (курс лекций). Учебное пособие. — М.: Центр. 2006.
  4. Елисеева Н.В., Власова Н.М., Амбарцумян Л.И. Экология. – Краснодар: ООО «Атриум», 2004.
  5. Моисеев А.Н. Экология в современном мире // Энергия. 2003. № 4.

     

     


     

<

Комментирование закрыто.

MAXCACHE: 0.97MB/0.00181 sec

WordPress: 21.6MB | MySQL:120 | 2,073sec