УЛЬТРАФИОЛЕТОВОЕ И ЛАЗЕРНОЕ ИЗЛУЧЕНИЯ

<

061714 0146 1 УЛЬТРАФИОЛЕТОВОЕ И ЛАЗЕРНОЕ  ИЗЛУЧЕНИЯ1.1. Влияние ультрафиолетового и лазерного излучения на человека

 

Ультрафиолетовое излучение (УФИ) — спектр ЭМИ с длиной волны от 200 до 400 нм. По биологическому эффекту выделяют три области УФИ: УФА— с длиной волны 400…315 нм, отличается сравнительно слабым биологическим действием; УФВ — с длиной волны 315…280 нм, способствует возникновению загара, а также защите малышей от заболевания рахитом; УФС — с длиной волны 280…200 нм, активно действует на белки и жиры, обладает выраженным бактерицидным (обеззараживающим) действием.

УФИ составляет примерно 5 % плотности потока солнечного излучения и является жизненно необходимым фактором, оказывающим благотворное стимулирующее действие на организм. УФ-облучение может понижать чувствительность организма к некоторым вредным веществам из-за усиления окислительных процессов в организме и более быстрого выведения яда (например, марганца, ртути, свинца). Оптимальные дозы УФИ активизируют деятельность сердца, обмен веществ, повышают Активность ферментов дыхания, улучшают кроветворение. Однако загрязнение атмосферы больших городов понижает ее прозрачность для УФИ, ограничивая его благотворное влияние на население.

УФИ искусственных источников, например, электросварочных дуг, плазмотронов может стать причиной острых и хронических профессиональных поражений. Наиболее уязвимым органом для УФИ является глаз, особенно страдает роговица и слизистая оболочка. Острые поражения глаз называются электроофтальмией. Заболевание проявляется ощущением постороннего тела или песка в глазах, светобоязнью, слезотечением. К хроническим заболеваниям относят воспаление слизистой оболочки (хронический конъюнктивит), воспаление края век (блефарит), помутнение хрусталика (катаракта). Роговица глаза наиболее чувствительна к излучению длиной волны 270…280 нм, наибольшее воздействие на хрусталик оказывает УФИ в диапазоне 295…320 нм. Возможность негативного действия УФА на сетчатку невелика, однако не исключена.

Воздействие УФИ на кожу может протекать в форме острого воспаления кожи с покраснением, иногда отеком и образованием пузырей. Может подняться температура, появиться озноб, головная боль. На коже после интенсивного УФ-облучения развивается сильная пигментация и шелушение. Длительное воздействие УФИ приводит к старению кожи, к развитию рака кожи.

Комбинированное действие УФИ и вредных веществ может привести к фотосенсибилизации — повышенной чувствительности организма к свету с развитием фотоаллергических реакций.

Гигиеническое нормирование УФИ в производственных помещениях осуществляется по СН 4557—88, которые устанавливают допустимые плотности потока излучения в зависимости от длин волн при условии защиты органов зрения и кожи.

Допустимая интенсивность УФИ для рабочих при наличии незащищенных участков поверхности кожи не более 0,2 м2 (лицо, шея, кисти рук и др.), общей продолжительностью воздействия излучения 50 % рабочей смены и длительности однократного облучения свыше 5 мин и более не должно превышать 10 Вт/м2 для области УФА и 0,01 Вт/м2 — для области УФВ. УФС при таких условиях не допускаются.

При использовании специальной одежды и средств защиты лица и рук, не пропускающих излучение (кожа, ткани с пленочным покрытием и т. п.) допустимая интенсивность облучения в области УФВ +УФС (200…315 нм) не должна превышать 1 Вт/м2.

Лазерное излучение (ЛИ) представляет собой особый вид ЭМИ, генерируемого в диапазоне длин волн 0,1…1000 мкм. Отличие ЛИ от других видов ЭМИ заключается в монохроматичности (строго одной длины волны), когерентности (все источники изучения испускают электромагнитные волны в одной фазе) и острой направленности луча. При оценке биологического действия ЛИ следует различать прямое (заключенное в ограниченном телесном угле), рассеянное (от вещества, находящегося в составе среды, сквозь которую проходит лазерный луч), зеркально отраженное (под углом, равным углу падения излучения), диффузно отраженное (по всевозможным направлениям).

Степень воздействия ЛИ на организм человека зависит от интенсивности излучения, длины волны, длительности импульса, частоты повторения импульсов, времени воздействия, а также от биологических и физико-химических особенностей облучаемых тканей и органов. Эффекты воздействия определяются механизмом взаимодействия ЛИ с тканями (тепловой, фотохимический, ударно-акустический, светового давления и др.). Лазерное излучение действует избирательно на различные органы, выделяют локальное и общее повреждение организма.

При облучении глаз легко повреждаются и теряют прозрачность роговица и хрусталик, причем нагрев хрусталика приводит к образованию катаракты. В спектральном диапазоне 0,4…1,4 мкм опасность для зрения резко возрастает, так как для этих длин волн оптические среды глаза становятся прозрачными. При повреждении сетчатки могут происходить временные нарушения, типа ослепления от высокой яркости световой вспышки, и повреждения, сопровождающиеся разрушением сетчатки в форме термического ожога с необратимыми повреждениями или в виде взрыва зерен пигмента меланина, причем сила взрыва такова, что зерна пигмента выбрасываются в стекловидное тело. При повреждении сетчатки происходит необратимое нарушение зрения, так как эти клетки не восстанавливаются. Степень повреждения радужной оболочки ЛИ в значительной мере зависит от ее окраски. Зеленые и голубые глаза более уязвимы в сравнении с карими.

Повреждение кожи может быть вызвано ЛИ любой длины волны в спектральном диапазоне 180…100 000 нм. При воздействии ЛИ в непрерывном режиме преобладают в основном тепловые эффекты, следствием которых являются свертывания белка, а при больших мощностях — испарение биоткани. Повреждения кожи могут быть различными: от покраснения до поверхностного обугливания и образования глубоких дефектов кожи, особенно на пигментированных участках (родимые пятна, места с сильным загаром).

ЛИ особенно дальней инфракрасной области (свыше 1400 нм) способно проникать через ткани тела на значительную глубину, поражая внутренние органы. Например, прямое облучение поверхности брюшной стенки вызывает повреждение печени, кишечника и других органов, а при облучении головы возможны внутричерепные кровоизлияния.

Общее воздействие ЛИ (диффузно отраженного) может приводить к различным функциональным нарушениям нервной, сердечно-сосудистой, систем, желез внутренней секреции, артериального давления,, увеличению утомляемости, снижению работоспособности.

Гигиеническое нормирование лазерного излучения проводится по СанПиН 5804—91. Предельно допустимые уровни (ПДУ) ЛИ устанавливаются для двух условий излучения — однократного и хронического, для трех диапазонов длин волн: 180…380 нм, 380… 1400 нм, 1400… 100 000 нм. Нормируемыми параметрами являются энергетическая экспозиция (Н) и облученность (Е). ПДУ ЛИ существенно различаются в зависимости от длины волны, длительности одиночного импульса, частоты следования импульсов и длительности воздействия. Установлены различные ПДУ для глаз (роговицы и сетчатки) и кожи.

В соответствии с ГОСТ 12.1.040—83′ по степени опасности генерируемого излучения лазеры подразделяются на четыре класса. К лазерам I класса относят полностью безопасные лазеры, выходное излучение которых не представляет опасности при облучении глаз и кожи. II класс — лазеры, выходное излучение которых представляет опасность при облучении глаз прямым и зеркально отраженным излучением, диффузно отраженное их излучение безопасно как для кожи, так и для глаз. III класс — лазеры, выходное излучение которых представляет опасность при облучении глаз прямым, зеркально отраженным, а также диффузно отраженным излучением на расстоянии 10 см от отражающей поверхности и (или) кожи при облучении прямым и зеркально отраженным пучком. Диффузно отраженное излучение не представляет опасности для кожи. Этот класс распространяется только на лазеры, генерирующие излучение в спектральном диапазоне 380…1400 нм. IV класс включает такие лазеры, диффузно отраженное излучение которых представляет опасность для глаз и кожи на расстоянии 10 см от отражающей поверхности.

 

1.2. Средства защиты от ультрафиолетовых излучений (УФИ). Защита при работе с лазерами

 

Снижение интенсивности облучения УФИ и защита от его воздействия достигается защитой «расстоянием», экранированием источников излучения; экранированием рабочих мест; средствами индивидуальной защиты; специальной окраской помещений и рациональным размещением рабочих мест.

Защита «расстоянием» —удаление обслуживающего персонала от источников УФИ. Расстояния, на которых уровни УФИ не представляют опасности для рабочих, определяются только экспериментально в каждом конкретном случае в зависимости от условий работы, состава производственной атмосферы, вида источника излучения, отражающих свойств конструкций помещения и оборудования и т. д.

Наиболее рациональным методом защиты является экранирование (укрытие) источников излучений. В качестве материалов экрана могут применяться различные материалы и светофильтры, не пропускающие или снижающие интенсивность излучений.

Особое значение имеет защита окружающих от действия излучений. С этой целью рабочие места, на которых имеет место УФИ, ограждаются ширмами, щитками либо устраиваются кабины.

Стены и ширмы в цехах окрашивают в светлые тона с добавлением в краску оксида цинка. Кабины изготовляют высотой 1,8…2 м, причем их стенки не должны доходить до пола на 25… 30 см для улучшения проветривания кабин.

Для защиты от УФИ обязательно применяются индивидуальные средства защиты, которые состоят из спецодежды (куртка, брюки), рукавиц, фартука из специальных тканей, щитка светофильтром, соответствующего определенной интенсивности излучения. Для защиты глаз, например при ручной электросварке, применяют светофильтры следующих типов: для электросварщиков при сварочном токе 30…75 А–Э-2; 75…200 А—Э-2; 200…400 А–Э-3 и при токе 400 А—Э-4.

Для защиты кожи от УФИ применятся мази, содержащие вещество, служащее светофильтрами для этих излучений (салол, садицилово-метиловый эфир и пр.), а также спецодежда, изготовляемая из льняных и хлопчатобумажных тканей с искростойкой пропиткой и из грубошерстных сукон. Для защиты рук от воздействия УФИ применяют рукавицы.

Работы с оптическими квантовыми генераторами (ОКГ) —лазерами —следует проводить в отдельных, специально выделенных помещениях или отгороженных частях помещений. Само помещение изнутри, оборудование и предметы, находящиеся в нем, не должны иметь зеркально отражающихся поверхностей, если на них может падать прямой или отраженный луч лазера. Эти поверхности лучше окрашивать в матовые тона с коэффициентом отражения не более 0,4. Искусственное освещение в помещении должно быть комбинированным и обеспечивать освещенность, соответствующую санитарным нормам. В помещение или в зону помещения с действующими лазерными установками должен быть ограничен доступ лиц, не имеющих отношение к работе установок.

Лазерная установка должна быть максимально экранирована: а) лазерный луч целесообразно передавать к мишени по волноводу (световоду) или по огражденному экранному пространству; б) линзы, призмы и другие с твердой зеркальной поверхностью предметы на пути ч луча должны снабжаться блендами; в) в конце луча следует устанавли-1 вать диафрагмы, предупреждающие отражение от мишени в стороны 1 на большие расстояния. Генератор и лампа накачки должны быть заключены в светонепроницаемую камеру. Лампы накачки должны , иметь блокировку, исключающую возможность вспышки лампы при открытом положении ее экрана. Устройства для визуальной юстировки необходимо оборудовать постоянно вмонтированными защитными светофильтрами, поглощающими излучение как на основной частоте, так и наиболее интенсивное излучение на высших гармониках. Для основного луча каждого ОКГ в помещении необходимо выбирать направление в зоны, в которых пребывание людей должно быть исключено.

При изготовлении экранирующих щитов, ширм, штор, занавесей следует применять непрозрачные теплостойкие материалы. При отсутствии опасности возникновения пожара от луча лазера ограждения могут быть сделаны из плотной ткани. Приведение ОКГ в рабочее положение полезно блокировать с установкой экранирующих устройств. Следует избегать работ с лазерными установками при затемнении помещения, поскольку при пониженной освещенности зрачок расширяется и увеличивается вероятность попадания лазерного излучения в глаз.

Производить или проверять юстировку лазерной установки необходимо только при отключенном питании возбуждающего устройства (батареи конденсаторов в твердотельных ОКГ и источников электрического тока в газовых ОКГ). Уменьшение уровней шумов, интенсивности излучения высокочастотных генераторов, рентгеновского излучения и концентрации вредных газов и паров необходимо осуществлять согласно соответствующим правилам.

В качестве индивидуальных средств защиты рекомендуются защитные очки из специального стекла. Очки целесообразно монтировать в маску или полумаску, защищающую лицо. Руки защищаются хлопчатобумажными перчатками. Для защиты остальных частей тела достаточна обычная одежда.

Для оценки опасности действия лазерного излучения в. производственных условиях необходимо провести расчет лазерно опасной зоны.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

<

2. Ионизирующие излучения

 

2.1. Влияние ионизирующего излучения на человека

 

В организме человека ионизирующие воздействия вызывают цепочку обратимых и необратимых изменений. Пусковым механизмом воздействия являются процессы ионизации и возбуждения атомов и молекул в тканях. Важную роль в формировании биологических эффектов играют свободные радикалы Н и ОН, которые образуются в результате радиолиза воды (в организме человека содержится до 70 % воды). Обладая высокой активностью, они вступают в химические реакции с молекулами белка, ферментов и других элементов биологической ткани, что приводит к нарушению биохимических процессов в организме. В процесс вовлекаются сотни и тысячи молекул, не затронутых излучением. В результате нарушаются обменные процессы, замедляется и прекращается рост тканей, возникают новые химические соединения, не свойственные организму. Это приводит к нарушению жизнедеятельности отдельных функций органов и систем организма. Под влиянием ионизирующих излучений в организме происходит нарушение функции кроветворных органов, увеличение проницаемости и хрупкости сосудов, расстройство желудочно-кишечного тракта, снижение сопротивляемости организма, его истощение, перерождение нормальных клеток в злокачественные и др. Эффекты развиваются в течение разных промежутков времени: от долей секунд до многих часов, дней, лет.

Радиационные эффекты принято делить на соматические и генетические. Соматические эффекты проявляются в форме острой и хронической лучевой болезни, локальных лучевых повреждений, например, ожогов, а также в виде отдаленных реакций организма, таких как лейкоз, злокачественные опухоли, раннее старение организма. Генетические эффекты могут проявиться в последующих поколениях.

Острые поражения развиваются при однократном равномерном гамма-облучении всего тела и поглощенной дозе свыше 0,25 Гр. При дозе 0,25…0,5 Гр могут наблюдаться временные изменения в крови, которые быстро нормализуются. В интервале дозы 0,5… 1,5 Гр возникает чувство усталости, менее чем у 10 % облученных может наблюдаться рвота, умеренные изменения в крови. При дозе 1,5…2,0 Гр наблюдается легкая форма острой лучевой болезни, которая проявляется продолжительным снижением числа лимфоцитов в крови (лимфопенией), возможна рвота в первые сутки после облучения. Смертельные исходы не регистрируются.

Лучевая болезнь средней тяжести возникает при дозе 2,5…4,0 Гр. Почти у всех в первые сутки — тошнота, рвота, резко снижается содержание лейкоцитов в крови, появляются подкожные кровоизлияния, в 20 % случаев возможен смертельный исход, смерть наступает через 2…6 недель после облучения.

При дозе 4,0…6,0 Гр развивается тяжелая форма лучевой болезни, приводящая в 50 % случаев к смерти в течение первого месяца. При дозах, превышающих 6,0…9,0 Гр, почти в 100 % случаев крайне тяжелая форма лучевой болезни заканчивается смертью из-за кровоизлияния или инфекционных заболеваний-.

Приведенные данные относятся к случаям, когда отсутствует лечение. В настоящее время имеется ряд противолучевых средств, которые при комплексном лечении позволяют исключить летальный исход при дозах около 10 Гр.

Хроническая лучевая болезнь может развиться при непрерывном или повторяющемся облучении в дозах, существенно ниже тех, которые вызывают острую форму. Наиболее характерными признаками хронической формы являются изменения в крови, нарушения со стороны нервной системы, локальные поражения кожи, повреждения хрусталика, снижение иммунитета организма.

Степень воздействия радиации зависит от того, является облучение внешним или внутренним (при попадании радиоактивного изотопа внутрь организма). Внутреннее облучение возможно при вдыхании, заглатывании радиоизотопов и проникновении их в организм человека через кожу. Некоторые вещества поглощаются и накапливаются в конкретных органах, что приводит к высоким локальным дозам радиации. Например, кальций, радий, стронций накапливаются в костях, изотопы иода вызывают повреждение щитовидной железы, редкоземельные элементы — преимущественно опухоли печени. Равномерно распределяются изотопы цезия, рубидия, вызывая угнетение кроветворения, повреждение семенников, опухоли мягких тканей. При внутреннем облучении наиболее опасны альфа-излучающие изотопы полония и плутония.

Гигиеническая регламентация ионизирующего излучения осуществляется Нормами радиационной безопасности НРБ—99 (Санитарными правилами СП 2.6.1.758—99).

Основные дозовые пределы облучения и допустимые уровни устанавливаются для следующих категорий облучаемых лиц:

— персонал — лица, работающие с техногенными источниками (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);

— все население, включая лиц из персонала, вне сферы и условий в их производственной деятельности.

Для категорий облучаемых лиц устанавливают три класса нормативов: основные пределы доз, (табл. 1) и допустимые уровни, соответствующие основным пределам доз и контрольные уровни.

Доза эквивалентная Н— поглощенная доза в органе или ткани D, умноженная на соответствующий взвешивающий коэффициент для данного излучения W:

H =W*D

Единицей измерения эквивалентной дозы является Дж/кг, имеющий специальное наименование зиверт (Зв).

Таблица 1

Основные пределы доз (извлечение из НРБ-99)

Нормируемые величины 

Пределы доз, мЗв 

Персонал

(группа А)* 

Население  

Эффективная доза 

20 мЗв в год в среднем за любые последовательные 5 лет, но не более 50 мЗв в год

1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в год

Эквивалентная доза за год в: 

   

хрусталике глаза *** 

150 

15 

коже**** 

500 

50 

Кистях и стопах 

500 

50 

* Допускается одновременное облучение до указанных пределов по всем нормируемым величинам.

** Основные пределы доз, как и все остальные допустимые уровни облучения персонала группы Б, равны 1/4 значений для персонала группы А. Далее в тексте все нормативные значения для категории персонал приводятся только для группы А.

*** Относится к дозе на глубине 300 мг/см2.

**** Относится к среднему по площади в 1 см2 значению в базальном слое кожи толщиной 5 мг/см2 под покровным слоем толщиной 5 мг/см2. На ладонях толщина покровного слоя 40 мг/см. Указанным пределом допускается облучение всей кожи человека при условии, что в пределах усредненного облучения любого 1 см площади кожи этот предел не будет превышен. Предел дозы при облучении кожи лица обеспечивает непревышение предела дозы на хрусталик от бета-частиц.

Значения для фотонов, электронов и ионов любых энергий составляет 1, для а — частиц, осколков деления, тяжелых ядер — 20.

Доза эффективная — величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органе (ткани) на соответствующий взвешивающий коэффициент для данного органа или ткани:

Основные пределы доз облучения не включают в себя дозы от природных и медицинских источников ионизирующего излучения, а также дозу вследствие радиационных аварий. На эти виды облучения устанавливаются специальные ограничения.

 

Таблица 2

Допустимые уровни общего радиоактивного загрязенния рабочих поверхностей кожи ( в течение рабочей смены) (извлечение из НРБ-96), спецодежды и средств индивидуальной защиты, частиц /(см2*мин)

Объект загрязнения

b-Активные нуклилы

b-Активные

нуклиды

Отдель-ные

прочие

Неповрежденная кожа, полотенца, спецбелье, внутренняя поверхность лицевых частей средств индивидуальной защиты

2

2

200

Основная спецодежда, внутренняя поверхность дополнительных средств индивидуальной защиты, наружная поверхность спецобуви

5

20

2000

Наружная поверхность дополнительных средств индивидуальной зашиты, снимаемой в саншлюзах

50

200

10000

Поверхности помещений постоянного пребывания персонала и находящегося в них оборудования

5

20

2000

Поверхности помещений периодического пребывания персонала и находящегося в них оборудования

50

200

10000

 

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) — 1000 мЗв, а для населения за период жизни (70 лет) — 70 мЗв. Кроме этого задаются допустимые уровни общего радиоактивного загрязнения рабочих поверхностей, кожи (в течение рабочей смены), спецодежды и средств индивидуальной защиты. Числовые значения допустимых уровней общего радиоактивного загрязнения приведены в табл.2.

 

2.2. Обеспечение безопасности при работе с ионизирующими излучениями

 

Все работы с радионуклидами правила подразделяют на два вида:

на работу с закрытыми источниками ионизирующих излучений и работу с открытыми радиоактивными источниками.

Закрытыми источниками ионизирующих излучений называются любые источники, устройство которых исключает попадание радиоактивных веществ в воздух рабочей зоны. Открытые источники ионизирующих излучений способны загрязнять воздух рабочей зоны. Поэтому отдельно разработаны требования к безопасной работе с закрытыми и открытыми источниками ионизирующих излучений на производстве.

Обеспечение радиационной безопасности требует комплекса многообразных защитных мероприятий, зависящих от конкретных условий работы с источниками ионизирующих излучений, а также от типа источника.

Главной опасностью закрытых источников ионизирующих излучений является внешнее облучение, определяемое видом излучения, активностью источника, плотностью потока излучения и создаваемой им дозой облучения и поглощенной дозой. Защитные мероприятия, позволяющие обеспечить условия радиационной безопасности при применении закрытых источников, основаны на знании законов распространения ионизирующих излучений и характера их взаимодействия с веществом. Главные из них следующие:

1. Доза внешнего облучения пропорциональна интенсивности излучения времени действия.

2. Интенсивность излучения от точечного источника пропорциональна количеству квантов или частиц, возникающих в них в единицу времени, и обратно пропорционально квадрату расстояния.

3. Интенсивность излучения может быть уменьшена с помощью экранов.

Из этих закономерностей вытекают основные принципы обеспечения радиационной безопасности: уменьшение мощности источников до минимальных величин (защита количеством); сокращение времени работы с источниками (зашита временем); увеличение расстояния от источника до работающих (защита расстоянием) и экранирование источников излучения материалами, поглощающими ионизирующие излучения (зашита экранами).

Защита количеством подразумевает проведение работы с минимальными количествами радиоактивных веществ, т.е. пропорционально сокращает мощность излучения. Однако требования технологического процесса часто не позволяют сократить, количество радиоактивного вещества в источнике, что ограничивает на практике применение этого метода зашиты.

Защита временем основана на сокращении времени работы с источником, что позволяет уменьшить дозы облучения персонала. Этот принцип особенно часто применяется при непосредственной работе персонала с малыми активностями.

Защита расстоянием —достаточно простой и надежный способ защиты. Это связано со способностью излучения терять свою энергию во взаимодействиях с веществом: чем больше расстояние от источника, тем больше процессов взаимодействия излучения с атомами и молекулами, что в конечном итоге приводит к снижению дозы облучения персонала.

Защита экранами наиболее эффективный способ защиты от излучений. В зависимости от вида ионизирующих излучений для изготовления экранов Применяют различные материалы, а их толщина определяется мощностью излучения. Лучшими экранами для защиты от рентгеновского и гамма-излучений являются материалы с большим 2, например свинец, позволяющий добиться нужного эффекта по кратности ослабления при наименьшей толщине экрана. Более дешевые экраны делаются из просвинцованного стекла, железа, бетона, барритобетона, железобетона и воды.

По своему назначению защитные экраны условно разделяются на пять групп:

1. Защитные экраны-контейнеры, в которые помещаются радиоактивные препараты. Они широко используются при транспортировке радиоактивных веществ и источников излучений.

2. Защитные Экраны для оборудования. В этом случае экранами полностью окружают все рабочее оборудование при положении радиоактивного препарата в рабочем положении или при включении высокого (или ускоряющего) напряжения на источнике ионизирующей радиации.

3. Передвижные защитные экраны. Этот тип защитных экранов применяется для защиты рабочего места на различных участках рабочей зоны.

4; Защитные экраны, монтируемые как части строительных конструкций (стены, перекрытия полов и потолков, специальные двери и т.д.). Такой вид защитных экранов предназначается для зашиты помещений, в которых постоянно находится персонал, и прилегающей территории.

5. Экраны индивидуальных средств защиты (щиток из оргстекла, смотровые стекла пневмокостюмов, просвинцованные перчатки и др.).

Зашита от открытых источников ионизирующих излучений предусматривает как защиту от внешнего облучения, так и защиту персонала от внутреннего облучения, связанного с возможным проникновением радиоактивных веществ в организм через органы дыхания, пищеварения или через кожу. Все виды работ с открытыми источниками ионизирующих излучений разделены на 3 класса. Чем выше класс выполняемых работ, тем жестче гигиенические требования по защите персонала от внутреннего переоблучения.

Способы защиты персонала при этом следующие:

1. Использование принципов защиты, применяемых при работе с источниками излучения в закрытом виде.

2. Герметизация производственного оборудования с целью изоляции процессов, которые могут явиться источниками поступления радиоактивных веществ во внешнюю среду.

3. Мероприятия планировочного характера. Планировка помещений предполагает максимальную изоляцию работ с радиоактивными веществами от других помещений и участков, имеющих иное функциональное назначение. Помещения для работ I класса должны размешаться в отдельных зданиях или изолированной части здания, имеющей отдельный вход. Помещения для работ II класса должны размещаться изолированно от других помещений; работы III класса могут проводиться в отдельных специально выделенных комнатах.

4. Применение санитарно-гигиенических устройств и оборудования, использование специальных защитных материалов.

5. Использование средств индивидуальной защиты персонала. Все средства индивидуальной защиты, используемые для работы с открытыми источниками, разделяются на пять видов: спецодежда, спецобувь, средства защиты органов дыхания, изолирующие костюмы, дополнительные защитные приспособления.

6. Выполнение правил личной гигиены. Эти правила предусматривают личностные требования к работающим с источниками ионизирующих излучений: запрещение курения в рабочей; зоне, тщательная очистка (дезактивация) кожных покровов после окончания работы, проведение дозиметрического контроля загрязнения спецодежды, спецобуви и кожных покровов. Все эти меры предполагают исключение возможности проникновения радиоактивных веществ внутрь организма.

Службы радиационной безопасности. Безопасность работы с источниками ионизирующих излучений на предприятиях контролируют специализированные службы—службы радиационной безопасности комплектуются из лиц, прошедших специальную подготовку в средних, высших учебных заведениях или специализированных курсах Минатома РФ. Эти службы оснащены необходимыми приборами и оборудованием, позволяющими решать поставленные перед ними задачи.

Службы выполняют все виды контроля на основании действующих методик, которые постоянно совершенствуются по мере выпуска новых видов приборов радиационного контроля.

Важной системой профилактических мероприятий при работе с источниками ионизирующих излучений является проведение радиационного контроля.

Основные задачи, определяемые национальным законодательством по контролю радиационной обстановки в зависимости от характера проводимых работ, следующие:

— контроль мощности дозы рентгеновского и гамма-излучений, потоков бета-частиц, нитронов, корпускулярных излучений на рабочих местах, смежных помещениях и на территории предприятия и наблюдаемой зоны;

— контроле за содержанием радиоактивных газов и аэрозолей в воздухе рабочих и других помещений предприятия;

— контроль индивидуального облучения в зависимости от характера работ: индивидуальный контроль внешнего облучения, контроль за содержанием радиоактивных веществ в организме или в отдельном критическом органе;

— контроль за величиной выброса радиоактивных веществ в атмосферу;

— контроль за содержанием радиоактивных веществ в сточных водах, сбрасываемых непосредственно в канализацию;

— контроль за сбором,удалением и обезвреживанием радиоактивных твердых и жидких отходов;

— контроль уровня загрязнения объектов внешней среды за пределами предприятия.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ЛИТЕРАТУРА

 

  1. О защите населения и территорий от ЧС природного и техногенного характера: ФЗ РФ. М. 1994
  2. Безопасность жизнедеятельности /Под ред. Белова С.В.–М.: Высшая школа, 2002.
  3. Безопасность жизнедеятельности/Под ред. Русака О.Н.–СПб.: ЛТА, 1996.
  4. Кукин П.П., Лапин В.Л. и др. Безопасность технологических процессов и производств. Охрана труда.–М.: Высшая школа, 2001.
  5. Кукин П.П., Лапин В.Л. и др. Основы радиационной безопасности в жизнедеятельности человека.– Курск, КГТУ, 1995
  6. Охрана окружающей среды/ Под ред. Белова С.В. –М.: высшая школа, 1991.
  7. Нормы радиационной безопасности. М., 1996
<

Комментирование закрыто.

MAXCACHE: 0.96MB/0.00035 sec

WordPress: 21.84MB | MySQL:120 | 1,866sec